Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Neurosci ; 67(1): 97-110, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30547417

RESUMEN

Brain-derived neurotrophic factor (BDNF) facilitates multiple aspects of neuronal differentiation and cellular physiology by activating the high-affinity receptor tyrosine kinase, TrkB. While it is known that both BDNF and TrkB modulate cellular processes involved in learning and memory, exactly how TrkB cross-talks and modulates signaling downstream of excitatory ionotropic receptors, such as the NMDA receptor (NMDAR), are not well understood. A model that we have investigated involves the signaling molecule RasGrf1, a guanine nucleotide exchange factor for both Ras and Rac. We previously identified RasGrf1 as a novel Trk binding partner that facilitates neurite outgrowth in response to both nerve growth factor (NGF) (Robinson et al. in J Biol Chem 280:225-235, 2005) and BDNF (Talebian et al. in J Mol Neurosci 49:38-51, 2013); however, RasGrf1 can also bind the NR2B subunit of the NMDAR (Krapivinsky et al. in Neuron 40:775-784, 2003) and stimulate long-term depression (LTD) (Li et al. in J Neurosci 26:1721-1729, 2006). We have addressed a model that TrkB facilitates learning and memory via two processes. First, TrkB uncouples RasGrf1 from NR2B and facilitates a decrease in NMDA signaling associated with LTD (p38-MAPK). Second, the recruitment of RasGrf1 to TrkB enhances neurite outgrowth and pERK activation and signaling associated with learning and memory. We demonstrate that NMDA recruits RasGrf1 to NR2B; however, co-stimulation with BDNF uncouples this association and recruits RasGrf1 to TrkB. In addition, activation of TrkB stimulates the tyrosine phosphorylation of RasGrf1 which increases neurite outgrowth (Talebian et al. in J Mol Neurosci 49:38-51, 2013), and the tyrosine phosphorylation of NR2B (Tyr1472) (Nakazawa et al. in J Biol Chem 276:693-699, 2001) which facilitates NMDAR cell surface retention (Zhang et al. in J Neurosci 28:415-24, 2008). Collectively, these data demonstrate that TrkB alters NMDA signaling by a dual mechanism that uncouples LTD and, in turn, stimulates neuronal growth and the signaling pathways associated with learning and memory.


Asunto(s)
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Encéfalo/fisiología , Células HEK293 , Humanos , Depresión Sináptica a Largo Plazo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Unión Proteica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ras-GRF1/metabolismo
2.
J Biol Chem ; 292(14): 5748-5759, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213521

RESUMEN

Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptor trkA/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Secuencias de Aminoácidos , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Fosforilación/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Receptor trkA/genética , Receptor trkB , Proteínas Adaptadoras de la Señalización Shc/genética
3.
Mol Cell Biol ; 36(20): 2596-611, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27503856

RESUMEN

Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser(185) by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/metabolismo , Pinocitosis , Receptor trkA/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Actinas/metabolismo , Muerte Celular , Línea Celular Tumoral , Humanos , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Serina/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo
4.
Mol Brain ; 8: 41, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26170135

RESUMEN

Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aß) peptides in the brain. Aß peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the ß - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aß40 and Aß42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aß production and that altering APP trafficking represents a viable strategy to reduce Aß production.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Péptidos beta-Amiloides/biosíntesis , Lisosomas/metabolismo , Pinocitosis , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP , Actinas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Compartimento Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Supervivencia Celular , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/metabolismo , Dextranos/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Proteínas Mutantes/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Proteína de Unión al GTP rac1/metabolismo
5.
NMR Biomed ; 28(5): 566-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808190

RESUMEN

Increased lactate production through glycolysis in aerobic conditions is a hallmark of cancer. Some anticancer drugs have been designed to exploit elevated glycolysis in cancer cells. For example, lonidamine (LND) inhibits lactate transport, leading to intracellular acidification in cancer cells. Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is dependent on intracellular pH. Amine and amide concentration-independent detection (AACID) and apparent amide proton transfer (APT*) represent two recently developed CEST contrast parameters that are sensitive to pH. The goal of this study was to compare the sensitivity of AACID and APT* for the detection of tumor-selective acidification after LND injection. Using a 9.4-T MRI scanner, CEST data were acquired in mice approximately 14 days after the implantation of 10(5) U87 human glioblastoma multiforme (GBM) cells in the brain, before and after the administration of LND (dose, 50 or 100 mg/kg). Significant dose-dependent LND-induced changes in the measured CEST parameters were detected in brain regions spatially correlated with implanted tumors. Importantly, no changes were observed in T1- and T2-weighted images acquired before and after LND treatment. The AACID and APT* contrast measured before and after LND injection exhibited similar pH sensitivity. Interestingly, LND-induced contrast maps showed increased heterogeneity compared with pre-injection CEST maps. These results demonstrate that CEST contrast changes after the administration of LND could help to localize brain cancer and monitor tumor response to chemotherapy within 1 h of treatment. The LND CEST experiment uses an anticancer drug to induce a metabolic change detectable by endogenous MRI contrast, and therefore represents a unique cancer detection paradigm which differs from other current molecular imaging techniques that require the injection of an imaging contrast agent or tracer.


Asunto(s)
Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico , Indazoles/uso terapéutico , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Animales , Antineoplásicos/uso terapéutico , Medios de Contraste , Humanos , Concentración de Iones de Hidrógeno , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Ratones Desnudos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Células Tumorales Cultivadas
6.
J Mol Neurosci ; 55(3): 663-77, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25159185

RESUMEN

The neurotrophins are a family of closely related growth factors that regulate proliferation and differentiation in the developing and mature nervous systems. Neurotrophins stimulate a family of receptor tyrosine kinases (Trk receptors) and utilize an intracellular docking protein termed fibroblast growth factor (FGF) receptor substrate 2 (FRS2) as a major downstream adapter to activate Ras, phosphatidylinositide 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) signaling cascades. The goals of this study were twofold: first, to investigate the complexity of neurotrophin-induced FRS2 interactions in primary cortical neurons and to determine which pathway(s) are important in regulating neuronal growth and, second, to determine whether the related signaling adapter, FRS3, stimulates neuron growth comparable to FRS2. We find that neurotrophin treatment of primary cortical neurons stimulates the tyrosine phosphorylation of FRS2 and the subsequent recruitment of Shp2, Grb2, and Gab2. With FRS2 mutants deficient in Grb2 or Shp2 binding, we demonstrate that FRS2 binds Gab1 and Gab2 through Grb2, providing an alternative route to activate PI3 kinase and Shp2. Using recombinant adenoviruses expressing FRS2, we demonstrate that FRS2 overexpression promotes neurite outgrowth and branching in cortical neurons relative to controls. In contrast, overexpression of FRS3 does not stimulate neuronal growth. Moreover, we find that while loss of Shp2, but not Grb2, reduces brain-derived neurotrophic factor (BDNF)-induced MAPK activation, the loss of either pathway impairs neuronal growth. Collectively, these experiments demonstrate that FRS2 functions as an adapter of a multiprotein complex that is activated by the Trk receptors and that the activation of both Grb2- and Shp2-dependent pathways facilitates cortical neuronal growth.


Asunto(s)
Corteza Cerebral/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Células COS , Células Cultivadas , Corteza Cerebral/citología , Chlorocebus aethiops , Proteína Adaptadora GRB2/genética , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Ratones , Neuronas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
7.
J Cereb Blood Flow Metab ; 34(4): 690-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24496171

RESUMEN

Tissue pH is an indicator of altered cellular metabolism in diseases including stroke and cancer. Ischemic tissue often becomes acidic due to increased anaerobic respiration leading to irreversible cellular damage. Chemical exchange saturation transfer (CEST) effects can be used to generate pH-weighted magnetic resonance imaging (MRI) contrast, which has been used to delineate the ischemic penumbra after ischemic stroke. In the current study, a novel MRI ratiometric technique is presented to measure absolute pH using the ratio of CEST-mediated contrast from amine and amide protons: amine/amide concentration-independent detection (AACID). Effects of CEST were observed at 2.75 parts per million (p.p.m.) for amine protons and at 3.50 p.p.m. for amide protons downfield (i.e., higher frequency) from bulk water. Using numerical simulations and in vitro MRI experiments, we showed that pH measured using AACID was independent of tissue relaxation time constants, macromolecular magnetization transfer effects, protein concentration, and temperature within the physiologic range. After in vivo pH calibration using phosphorus ((31)P) magnetic resonance spectroscopy ((31)P-MRS), local acidosis is detected in mouse brain after focal permanent middle cerebral artery occlusion. In summary, our results suggest that AACID represents a noninvasive method to directly measure the spatial distribution of absolute pH in vivo using CEST MRI.


Asunto(s)
Acidosis Láctica , Amidas/análisis , Aminas/análisis , Isquemia Encefálica/metabolismo , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Acidosis Láctica/diagnóstico , Acidosis Láctica/metabolismo , Animales , Biomarcadores/análisis , Calibración , Simulación por Computador , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Químicos
8.
J Biol Chem ; 288(33): 23807-13, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23749991

RESUMEN

TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.


Asunto(s)
Insulina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Activación Enzimática/efectos de los fármacos , Glucosa/metabolismo , Humanos , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Datos de Secuencia Molecular , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor trkA/química , Transducción de Señal/efectos de los fármacos
9.
J Mol Neurosci ; 49(1): 38-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22744634

RESUMEN

We previously demonstrated that the guanine nucleotide exchange factor, RasGrf1, binds nerve growth factor (NGF)-activated TrkA and facilitates neurotrophin-induced neurite outgrowth in PC12 cells. RasGrf1 can activate both Ras and Rac, via intrinsic Cdc25 and DH domains, respectively, suggesting that the activation of both could contribute to this process. Previous studies have assayed constitutive neurite outgrowth following RasGrf1 over-expression in PC12 cells, in either the absence or presence of ectopic H-Ras, and have suggested an essential role for either Ras or Rac depending on the presence of H-Ras over-expression. In contrast, in this study, we have addressed the mechanism of how RasGrf1 facilitates neurite outgrowth in response to the neurotrophins, NGF and BDNF. Using Ras/Rac activation assays and site-directed RasGrf1 mutants, we find that both Ras and Rac are essential to neurotrophin-induced neurite outgrowth. Moreover, we find that H-Ras over-expression rescues the loss of neurite outgrowth observed with a Rac minus mutant and that RasGrf1 differentially stimulates NGF-dependent activation of Rac or Ras, depending on cell type. Collectively, these studies clarify the mechanism of how RasGrf1 expression facilitates neurotrophin-induced neurite outgrowth. Moreover, they suggest that H-Ras over-expression should be used with caution to measure phenotypic responses.


Asunto(s)
Neuritas/fisiología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas de Unión al GTP rac/metabolismo , ras-GRF1/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células HEK293 , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Mutación , Factor de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Células PC12 , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Regulación hacia Arriba , ras-GRF1/genética
10.
J Neurochem ; 121(6): 861-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22404429

RESUMEN

Vesicular transport in neurons plays a vital role in neuronal function and survival. Nesca is a novel protein that we previously identified and herein describe its pattern of expression, subcellular localization and protein-protein interactions both in vitro and in vivo. Specifically, a large proportion of Nesca is in tight association with both actin and microtubule cytoskeletal proteins. Nesca binds to F-actin, microtubules, ßIII and acetylated α-tubulin, but not neurofilaments or the actin-binding protein drebrin, in in vitro-binding assays. Nesca co-immunoprecipitates with kinesin heavy chain (KIF5B) and kinesin light-chain motors as well as with the synaptic membrane precursor protein, syntaxin-1, and is a constituent of the post-synaptic density. Moreover, in vitro-binding assays indicate that Nesca directly binds KIF5B, kinesin light-chain and syntaxin-1. In contrast, Nesca does not co-immunoprecipitate with the kinesin motors KIF1B, KIF3A nor does it bind syntaxin-4 or the synaptosome-associated protein 25 kDa (SNAP-25) in vitro. Nesca expression in neurons is highly punctuate, co-stains with syntaxin-1, and is found in fractions containing markers of early endosomes and Golgi suggesting that it is involved in vesicular transport. Collectively, these data suggest that Nesca functions as an adapter involved in neuronal vesicular transport including vesicles containing soluble N-ethylmaleimide sensitive factor attachment protein receptors that are essential to exocytosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Sintaxina 1/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Western Blotting , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Hipocampo/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Neurogénesis/fisiología , Densidad Postsináptica/metabolismo , Transporte de Proteínas/fisiología , Membranas Sinápticas/metabolismo , Transfección
11.
J Neurochem ; 112(4): 882-99, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19943845

RESUMEN

Ectopic expression of the TrkA receptor tyrosine kinase in tumors of the nervous system can mediate nerve growth factor (NGF)-dependent cell death by apoptosis and /or autophagy. Herein, we demonstrate that TrkA can also induce cell death in medulloblastoma Daoy cells by a caspase-independent mechanism that involves the hyperstimulation of macropinocytosis. Specifically, NGF-stimulates the uptake of AlexaFluor546-dextran into lysosome-associated membrane protein-1 positive vacuoles which fuse with microtubule associated protein light chain 3 (LC3) positive autophagosomes, to form large intracellular vacuoles (> 1 mum), which then fuse with lysotracker positive lysosomes. While LC3 cleavage and the appearance of LC3 positive vacuoles suggest the induction of autophagy, siRNA reduced expression of four proteins essential to autophagy (beclin-1, Atg5, LC3 and Atg9) neither blocks NGF-induced vacuole formation nor cell death. TrkA activated cell death does not require p38, JNK or Erk1/2 kinases but does require activation of class III PI-3 kinase and is blocked by the casein kinase 1 (CK1) inhibitor, D4476. This inhibitor does not interfere with TrkA activation but does block NGF-dependent AlexaFluor546-dextran uptake and CK1 dependent phosphorylation of beta-catenin. Collectively, these data demonstrate that TrkA stimulates cell death by a novel mechanism involving CK1-dependent hyperstimulation of macropinocytosis.


Asunto(s)
Autofagia/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Pinocitosis/efectos de los fármacos , Pinocitosis/fisiología , Receptor trkA/metabolismo , Análisis de Varianza , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Línea Celular Tumoral , Citocromos c/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación/métodos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Meduloblastoma/patología , Meduloblastoma/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión/métodos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección/métodos
12.
J Neurochem ; 112(4): 924-39, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19943849

RESUMEN

Fibroblast growth factor (FGF) mediated signaling is essential to many aspects of neural development. Activated FGF receptors signal primarily through the FGF receptor substrate (Frs) adapters, which include Frs2/Frs2alpha and Frs3/Frs2beta. While some studies suggest that Frs3 can compensate for the loss of Frs2 in transfected cells, the lack of an effective Frs3 specific antibody has prevented efforts to determine the role(s) of the endogenous protein. To this end, we have generated a Frs3 specific antibody and have characterized the pattern of Frs3 expression in the developing nervous system, its subcellular localization as well as its biochemical properties. We demonstrate that Frs3 is expressed at low levels in the ventricular zone of developing cortex, between E12 and E15, and it co-localizes with nestin and acetylated alpha-tubulin in radial processes in the ventricular/subventricular zones as well as with betaIII tubulin in differentiated cortical neurons. Subcellular fractionation studies demonstrate that endogenous Frs3 is both soluble and plasma membrane associated while Frs3 expressed in 293T cells associates exclusively with lipid rafts. Lastly, we demonstrate that neuronal Frs3 binds microtubules comparable to the microtubule-associated protein, MAP2, while Frs2 does not. Collectively, these data suggest that neuronal Frs3 functions as a novel microtubule binding protein and they provide the first biochemical evidence that neuronal Frs3 is functionally distinct from Frs2/Frs2alpha.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , AMP Cíclico/farmacología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo , Humanos , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neuronas/efectos de los fármacos , Unión Proteica , Proteínas de Dominio T Box/metabolismo , Tubulina (Proteína)/metabolismo
13.
Glycobiology ; 17(7): 725-34, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17389653

RESUMEN

Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.


Asunto(s)
Glucosa/metabolismo , Glicoproteínas/metabolismo , Neuraminidasa/metabolismo , Estrés Oxidativo , Receptor trkB/metabolismo , Suero/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Supervivencia Celular , Inhibidores Enzimáticos/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipoxia , Factor de Crecimiento Nervioso/metabolismo , Oseltamivir/farmacología , Células PC12 , Ratas
14.
Biochim Biophys Acta ; 1763(4): 366-80, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16697063

RESUMEN

We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/PTB domains of the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated MapK to support neurite outgrowth in PC12 cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento Nervioso/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Células PC12 , Ratas , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Especificidad por Sustrato/fisiología
15.
J Neurosci Res ; 82(6): 788-801, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16302187

RESUMEN

The function of gap junctions is regulated by the phosphorylation state of their connexin subunits. Numerous growth factors are known to regulate connexin phosphorylation; however, the effect of nerve growth factor on gap junction function is not understood. The phosphorylation of connexin subunits is a key event during many aspects of the lifecycle of a connexin, including open/close states, assembly/trafficking, and degradation, and thus affects the functionality of the channel. PC12 cells infected with connexin43 (Cx43) retrovirus were used as a neuronal model to characterize the signal transduction pathways activated by nerve growth factor (NGF) that potentially affect the functional state of Cx43. Immunoblot analysis demonstrated that Cx43 and the mitogen-activated protein kinase (MAPK), ERK-1/2, were phosphorylated in response to TrkA activation via NGF and that phosphorylation could be prevented by treatment with the MEK-1/2 inhibitor U0126. The effects of NGF on gap junction intercellular communication were examined by monitoring fluorescence recovery after photobleaching PC12-Cx43 cells preloaded with calcein. Fluorescence recovery in the photobleached area increased after NGF treatment and decreased when pretreated with the MEK-1/2 inhibitor U0126. These data are the first to show a direct signaling link between neurotrophins and the phosphorylation of connexin proteins through the MAPK pathway resulting in increased gap junctional intercellular communication. Neurotrophic regulation of connexin activity provides a novel mechanism of regulating intercellular communication between neurons during nervous system development and repair.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Conexina 43/metabolismo , Uniones Intercelulares/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Animales , Western Blotting/métodos , Butadienos/farmacología , Comunicación Celular/fisiología , Línea Celular Tumoral , Conexina 43/genética , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Inmunohistoquímica/métodos , Uniones Intercelulares/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Mutación , Neuroblastoma/patología , Nitrilos/farmacología , Células PC12/clasificación , Fosforilación/efectos de los fármacos , Fotoblanqueo/efectos de los fármacos , Ratas , Retroviridae/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
16.
J Biol Chem ; 280(20): 19461-71, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15753086

RESUMEN

The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Receptor trkA/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , ADN/genética , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Cinética , Neuritas/metabolismo , Neuritas/ultraestructura , Células PC12 , Fosforilación , Interferencia de ARN , Ratas , Receptor trkA/química , Receptor trkA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección , Técnicas del Sistema de Dos Híbridos , Tirosina/química
17.
J Biol Chem ; 280(1): 225-35, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15513915

RESUMEN

Ras guanine-releasing factor 1 (RasGrf1), a guanine nucleotide exchange factor for members of the Ras and Rho family of GTPases, is highly expressed in the brain. It is regulated by two separate mechanisms, calcium regulation through interaction with its calcium/calmodulin-binding IQ domain and serine and tyrosine phosphorylation. RasGrf1 is activated downstream of G-protein-coupled receptors and the non-receptor tyrosine kinases, Src and Ack1. Previously, we demonstrated a novel interaction between the intracellular domain of the nerve growth factor-regulated TrkA receptor tyrosine kinase and an N-terminal fragment of RasGrf1. We now show that RasGrf1 is phosphorylated and interacts with TrkA, -B, and -C in co-transfection studies. This interaction and phosphorylation of RasGrf1 is dependent on the HIKE domain of TrkA (a region shown to interact with pleckstrin homology domains) but not on any of the phosphotyrosine residues that act as docking sites for intracellular signaling molecules such as Shc and FRS-2. The PH1 domain alone of RasGrf1 is sufficient for phosphorylation by the TrkA receptor. A potential role for Trk activation of RasGrf1 is suggested through transfection studies in PC12 cells in which RasGrf1 significantly increases neurite outgrowth at low doses of neurotrophin stimulation. Notably, this neurite outgrowth is dependent on an intact HIKE domain, as nnr5-S10 cells expressing a TrkA HIKE domain mutant do not exhibit potentiated neurite outgrowth in the presence of RasGrf1. These studies identify RasGrf1 as a novel target of neurotrophin activation and suggest an additional pathway whereby neurotrophin-stimulated neurite outgrowth may be regulated.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Neuritas/fisiología , Receptor trkA/metabolismo , ras-GRF1/metabolismo , Animales , Sitios de Unión , Aumento de la Célula , Humanos , Ratones , Neuritas/ultraestructura , Células PC12 , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Receptor trkB/metabolismo , Transducción de Señal , Tirosina/metabolismo
18.
J Neurochem ; 91(3): 694-703, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15485499

RESUMEN

Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Moléculas de Adhesión de Célula Nerviosa/farmacología , Neuritas/fisiología , Neuronas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Proteína Adaptadora GRB2 , Humanos , Proteínas de la Membrana/fisiología , Ratones , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Células PC12 , Fosfoproteínas/fisiología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-fyn , Ratas , Proteínas Adaptadoras de la Señalización Shc , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Familia-src Quinasas/metabolismo
19.
Glycobiology ; 14(11): 987-98, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15240558

RESUMEN

Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme that hydrolyzes alpha2,3-linked sialic acids and transfers them to acceptor molecules. Here we show that a highly purified recombinant TS derived from T. cruzi parasites targets TrkA receptors on TrkA-expressing PC12 cells and colocalizes with TrkA internalization and phosphorylation (pTrkA). Maackia amurensis lectin II (MAL-II) and Sambucus nigra lectin (SNA) block TS binding to TrkA-PC12 cells in a dose-dependent manner with subsequent inhibition of TS colocalization with pTrkA. Cells treated with lectins alone do not express pTrkA. The catalytically inactive mutant TSDeltaAsp98-Glu also binds to TrkA-expressing cells, but is unable to induce pTrkA. TrkA-PC12 cells treated with a purified recombinant alpha2,3-neuraminidase (Streptococcus pneumoniae) express pTrkA. Wild-type TS but not the mutant TSDeltaAsp98-Glu promotes neurite outgrowth in TrkA-expressing PC12 cells. In contrast, these effects are not observed in TrkA deficient PC12nnr5 cells but are reestablished in PC12nnr5 cells stably transfected with TrkA and are significantly blocked by inhibitors of tyrosine kinase (K-252a) and MAP/MEK protein kinase (PD98059). Together these observations suggest for the first time that hydrolysis of sialyl alpha2,3-linked beta-galactosyl residues of TrkA receptors plays an important role in TrkA receptor activation, sufficient to promote cell differentiation (neurite outgrowth) independent of nerve growth factor.


Asunto(s)
Endocitosis , Glicoproteínas/metabolismo , Neuraminidasa/metabolismo , Receptor trkA/metabolismo , Trypanosoma/enzimología , Animales , Activación Enzimática , Lectinas/metabolismo , Modelos Biológicos , Células PC12 , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo
20.
J Cell Biol ; 164(6): 851-62, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15024033

RESUMEN

We provide the first characterization of a novel signaling adapter, Nesca, in neurotrophic signal transduction. Nesca contains a RUN domain, a WW domain, a leucine zipper, a carboxyl-terminal SH3 domain, and several proline-rich regions. Nesca is highly expressed in the brain, is serine phosphorylated, and mobilizes from the cytoplasm to the nuclear membrane in response to neurotrophin, but not epidermal growth factor, stimulation in a MEK-dependent process. Overexpression studies in PC12 cells indicate that Nesca facilitates neurotrophin-dependent neurite outgrowth at nonsaturating doses of nerve growth factor (NGF). Similarly, short interfering RNA studies significantly reduce NGF-dependent neuritogenesis in PC12 cells. Mutational analyses demonstrate that the RUN domain is an important structural determinant for the nuclear translocation of Nesca and that the nuclear redistribution of Nesca is essential to its neurite outgrowth-promoting properties. Collectively, these works provide the first functional characterization of Nesca in the context of neurotrophin signaling and suggest that Nesca serves a novel, nuclear-dependent role in neurotrophin-dependent neurite outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Membrana Nuclear/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Encéfalo/citología , Encéfalo/metabolismo , Proteínas Portadoras/genética , Activación Enzimática , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Señales de Localización Nuclear , Células PC12 , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...