Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 95(3): 245-259, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591538

RESUMEN

Allosteric modulation of receptors provides mechanistic safety while effectively achieving biologic endpoints otherwise difficult or impossible to obtain by other means. The theoretical case has been made for the development of a positive allosteric modulator (PAM) of the type 1 cholecystokinin receptor (CCK1R) having minimal intrinsic agonist activity to enhance meal-induced satiety for the treatment of obesity, while reducing the risk of side effects and/or toxicity. Unfortunately, such a drug does not currently exist. In this work, we have identified a PAM agonist of the CCK1R, SR146131, and determined its putative binding mode and receptor activation mechanism by combining molecular modeling, chimeric CCK1R/CCK2R constructs, and site-directed mutagenesis. We probed the structure-activity relationship of analogs of SR146131 for impact on agonism versus cooperativity of the analogs. This identified structural features that might be responsible for binding affinity and potency while retaining PAM activity. SR146131 and several of its analogs were docked into the receptor structure, which had the natural endogenous peptide agonist, cholecystokinin, already in the bound state (by docking), providing a refined structural model of the intact CCK1R holoreceptor. Both SR146131 and its analogs exhibited unique probe-dependent cooperativity with orthosteric peptide agonists and were simultaneously accommodated in this model, consistent with the derived structure-activity relationships. This provides improved understanding of the molecular basis for CCK1R-directed drug development.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Colecistoquinina/metabolismo , Receptores de Colecistoquinina/agonistas , Receptores de Colecistoquinina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Células CHO , Línea Celular , Cricetulus , Indoles/farmacología , Mutagénesis Sitio-Dirigida/métodos , Péptidos/metabolismo , Relación Estructura-Actividad , Tiazoles/farmacología
2.
Bioorg Med Chem Lett ; 27(20): 4730-4734, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947155
3.
J Biol Chem ; 288(42): 30125-30138, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24003220

RESUMEN

PRP4 kinase is known for its roles in regulating pre-mRNA splicing and beyond. Therefore, a wider spectrum of PRP4 kinase substrates could be expected. The role of PRP4 kinase in cancer is also yet to be fully elucidated. Attaining specific and potent PRP4 inhibitors would greatly facilitate the study of PRP4 biological function and its validation as a credible cancer target. In this report, we verified the requirement of enzymatic activity of PRP4 in regulating cancer cell growth and identified an array of potential novel substrates through orthogonal proteomics approaches. The ensuing effort in structural biology unveiled for the first time unique features of PRP4 kinase domain and its potential mode of interaction with a low molecular weight inhibitor. These results provide new and important information for further exploration of PRP4 kinase function in cancer.


Asunto(s)
Proteínas de Neoplasias , Neoplasias , Inhibidores de Proteínas Quinasas , Ribonucleoproteína Nuclear Pequeña U4-U6 , Línea Celular Tumoral , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Ribonucleoproteína Nuclear Pequeña U4-U6/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo
4.
J Mol Biol ; 407(2): 284-97, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21241708

RESUMEN

Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis-the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs-from Saccharomyces cerevisiae and rabbit skeletal muscle-demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.


Asunto(s)
Músculo Esquelético/enzimología , Fosfofructoquinasas/química , Saccharomyces cerevisiae/enzimología , Animales , Sitios de Unión/genética , Cristalografía , Eucariontes/enzimología , Fructosafosfatos/metabolismo , Glucólisis/genética , Modelos Moleculares , Fosfofructoquinasa-1/química , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Conejos , Saccharomyces cerevisiae/genética
5.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 10): 1747-52, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15388920

RESUMEN

Disufide-bond isomerase (DsbC) plays a crucial role in folding periplasmically excreted bacterial proteins. The crystal structure of the reduced form of DsbC is presented. The pair of thiol groups from Cys98 and Cys101 that form the reversible disulfide bond in the enzymatic active site are 3.1 A apart and the electron density clearly shows that the S atoms do not form a covalent bond. The other pair of Cys residues (141 and 163) in DsbC form a disulfide bond. This is different from the previously reported crystal form of DsbC (McCarthy et al., 2000), in which both Cys pairs are oxidized. Specific hydrogen-bond interactions are identified that stabilize the active site in the reactive reduced state with the special participation of hydrogen bonds between the active-site cysteine residues (98 and 101) and threonine residues 94 and 182. The present structure also differs in the orientation of the catalytic domains within the protein dimer. This is evidence of flexibility within the protein that probably plays a role in accommodating the substrates in the cleft between the catalytic domains.


Asunto(s)
Escherichia coli/enzimología , Proteína Disulfuro Isomerasas/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Cisteína/química , Dimerización , Disulfuros/química , Electrones , Enlace de Hidrógeno , Modelos Moleculares , Oxígeno/química , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
6.
J Struct Biol ; 143(2): 124-34, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12972349

RESUMEN

Phosphofructokinase plays a key role in the regulation of the glycolytic pathway and is responsible for the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. Although the structure of the bacterial enzyme is well understood, the knowledge is still quite limited for higher organisms given the larger size and complexity of the eukaryotic enzymes. We have studied phosphofructokinase from Saccharomyces cerevisiae in the presence of fructose 6-phosphate by cryoelectron microscopy and image analysis of single particles and obtained the structure at 10.8A resolution. This was achieved by optimizing the illumination conditions to obtain routinely 8-A data from hydrated samples in an electron microscope equipped with an LaB(6) and by improving the image alignment techniques. The analysis of the structure has evidenced that the homology of the subunits at the sequence level has transcended to the structural level. By fitting the X-ray structure of the bacterial tetramer into each dimer of the yeast octamer the putative binding sites for fructose 6-phosphate were revealed. The data presented here in combination with molecular replacement techniques have served to provide the initial phases to solve the X-ray structure of the yeast phosphofructokinase.


Asunto(s)
Fosfofructoquinasa-1/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Microscopía por Crioelectrón , Diseño de Equipo , Fructosafosfatos/metabolismo , Imagenología Tridimensional , Fosfofructoquinasa-1/aislamiento & purificación , Conformación Proteica , Subunidades de Proteína/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Homología Estructural de Proteína
7.
Structure ; 10(10): 1383-94, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12377124

RESUMEN

The X-prolyl dipeptidyl aminopeptidase (X-PDAP) from Lactococcus lactis is a dimeric enzyme catalyzing the removal of Xaa-Pro dipeptides from the N terminus of peptides. The structure of the enzyme was solved at 2.2 A resolution and provides a model for the peptidase family S15. Each monomer is composed of four domains. The larger one presents an alpha/beta hydrolase fold and comprises the active site serine. The specificity pocket is mainly built by residues from a small helical domain which is, together with the N-terminal domain, essential for dimerization. A C-terminal moiety probably plays a role in the tropism of X-PDAP toward the cellular membrane. These results give new insights for further exploration of the role of the enzymes of the SC clan.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Lactococcus lactis/enzimología , Secuencia de Aminoácidos , Catálisis , Dimerización , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...