Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475354

RESUMEN

Bipolar plates (BPs) are one of the most important components of polymer electrolyte membrane fuel cells (PEMFCs) because of their important role in gas and water management, electrical performance, and mechanical stability. Therefore, promising materials for use as BPs should meet several technical targets established by the United States Department of Energy (DOE). Thus far, in the literature, many materials have been reported for possible applications in BPs. Of these, polymer composites reinforced with carbon allotropes are one of the most prominent. Therefore, in this review article, we present the progress and critical analysis on the use of carbon material-reinforced polymer composites as BPs materials in PEMFCs. Based on this review, it is observed that numerous polymer composites reinforced with carbon allotropes have been produced in the literature, and most of the composites synthesized and characterized for their possible application in BPs meet the DOE requirements. However, these composites can still be improved before their use for BPs in PEMFCs.

2.
Heliyon ; 9(11): e21374, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37885729

RESUMEN

Nowadays, the tendency to replace conventional fossil-based plastics is increasing considerably; there is a growing trend towards alternatives that involve the development of plastic materials derived from renewable sources, which are compostable and biodegradable. Indeed, only 1.5 % of whole plastic production is part of the small bioplastics market, even when these materials with a partial or full composition from biomass are rapidly expanding. A very interesting field of investigation is currently being developed in which the disposal and processing of the final products are evaluated in terms of reducing environmental harm. This review presents a compilation of polyethylene (PE) types, their uses, and current problems in the waste management of PE and recycling. Particularly, this review is based on the capabilities to synthesize bio-based PE from natural and renewable sources as a replacement for the raw material derived from petroleum. In addition to recent studies in degradation on different types of PE with weight loss ranges from 1 to 47 %, the techniques used and the main changes observed after degradation. Finally, perspectives are presented in the manuscript about renewable and non-renewable polymers, depending on the non-degradable, biodegradable, and compostable behavior, including composting recent studies in PE. In addition, it contributes to the 3R approaches to responsible waste management of PE and advancement towards an environmentally friendly PE.

3.
Polymers (Basel) ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447469

RESUMEN

One of the main limitations in the creation of bioplastics is their large-scale development, referred to as the industrial-scale processing of plastics. For this reason, bioplastic engineering emerges as one of the main objectives of researchers, who are attempting to create not only more environmentally friendly but also sustainable, low-cost, and less polluting materials. This review presents the advances in the development of biodegradable and compostable films/containers using eco-friendly components of by-products of the coffee industry, such as coffee flour (CF), coffee mucilage (CM), coffee husks (CH), coffee silverskin (CS), and spent coffee grounds (SCGs), and a brief review of the common industrial processing techniques for the production of food packaging, including extrusion, compression molding, injection molding, and laboratory-scale techniques such as solvent casting. Finally, this review presents various advances in the area that can be scalable or applicable to different products using by-products generated from the coffee industry, taking into account the limitations and drawbacks of using a biomaterial.

4.
Plants (Basel) ; 12(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447021

RESUMEN

Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-, and tri-metal oxide nanoparticles for controlling phytopathogenic fungi is presented. Among the studied metal oxide nanoparticles, mono-metal oxide nanoparticles-particularly ZnO nanoparticles, followed by CuO nanoparticles -are the most investigated for controlling phytopathogenic fungi. Limited studies have investigated the use of bi- and tri-metal oxide nanoparticles for controlling phytopathogenic fungi. Therefore, more studies on these nanoparticles are required. Most of the evaluations have been carried out under in vitro conditions. Thus, it is necessary to develop more detailed studies under in vivo conditions. Interestingly, biological synthesis of nanoparticles has been established as a good alternative to produce metal oxide nanoparticles for controlling phytopathogenic fungi. Although there have been great advances in the use of metal oxide nanoparticles as novel antifungal agents for sustainable agriculture, there are still areas that require further improvement.

5.
Nanomaterials (Basel) ; 13(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37110968

RESUMEN

Portland cement (PC) is a material that is indispensable for satisfying recent urban requirements, which demands infrastructure with adequate mechanical and durable properties. In this context, building construction has employed nanomaterials (e.g., oxide metals, carbon, and industrial/agro-industrial waste) as partial replacements for PC to obtain construction materials with better performance than those manufactured using only PC. Therefore, in this study, the properties of fresh and hardened states of nanomaterial-reinforced PC-based materials are reviewed and analyzed in detail. The partial replacement of PC by nanomaterials increases their mechanical properties at early ages and significantly improves their durability against several adverse agents and conditions. Owing to the advantages of nanomaterials as a partial replacement for PC, studies on the mechanical and durability properties for a long-term period are highly necessary.

6.
Crit Rev Food Sci Nutr ; 63(20): 4618-4635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34817310

RESUMEN

In the twenty-first century food sector, nanotechnological processing is a new frontier that has vibrant impact on enhancing the food quality, nutritional value, food safety, and nano-fortified functional foods aspects. In addition, the added-value of various robust nano-scale materials facilitates the targeted delivery of nutraceutical ingredients and treatment of obesity and comorbidities. The recent advancement in nanomaterial-assisted palatability enhancement of healthy foods opened up a whole new area of research and development in food nanoscience. However, there is no comprehensive review available on promises of nanotechnology in the food industry in the existing literature. Thus, herein, an effort has been made to cover this leftover literature gap by spotlighting the new nanotechnological frontier and their future scope in food engineering for better health. Following a brief introduction, promises of nanotechnology have revolutionized the twenty-first century food sector of the modern world. Next, recent and relevant examples discuss the exploitation and deployment of nanomaterials in food to attain certain health benefits. A detailed insight is also given by discussing the role of nano-processing in nutraceutical delivery to treat obesity and comorbidities. The latter half of the work focuses on improving healthy foods' palatability and food safety aspects to meet the growing consumer demands. Furthermore, marketed products and public acceptance of nanotechnologically designed food items as well as future prospects are also covered herein.


Asunto(s)
Suplementos Dietéticos , Alimentos Funcionales , Humanos , Alimentos Fortificados , Nanotecnología , Obesidad
7.
Eur J Med Chem ; 246: 114995, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493619

RESUMEN

5-Fluorouracil (5-FU) is amongst the most commonly used antimetabolite chemotherapeutic agents in recent decades. However, its low bioavailability, short half-life, rapid metabolism and the development of drug resistance after chemotherapy limit its therapeutic efficiency. In this study, 5-FU applications as an anti-cancer drug for treating diverse types of cancers (e.g. colon, pancreatic and breast) have been reviewed. Different approaches lately designed to circumvent the drawbacks of 5-FU therapy are described herein, including 5-FU-loaded lipid-based nanoparticles (NPs), polymeric NPs (both stimuli and non-stimuli responsive), carbon-based nanostructures and inorganic NPs. Furthermore, co-delivery systems of 5-FU with other drugs (e.g. paclitaxel, gelatin-doxorubicin and naproxen) have been reviewed, which aid to attain better bioavailability, higher effectiveness at a lower concentration and lower toxicity. This review provides researchers with the latest progress on 5-FU-loaded nanocarriers, which show great potential as an advanced tool for cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas/química , Neoplasias/tratamiento farmacológico
8.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36433107

RESUMEN

Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.

9.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080492

RESUMEN

Nanoliposomes, bilayer vesicles at the nanoscale, are becoming popular because of their safety, patient compliance, high entrapment efficiency, and prompt action. Several notable biological activities of natural essential oils (EOs), including fungal inhibition, are of supreme interest. As developed, multi-compositional nanoliposomes loaded with various concentrations of clove essential oil (CEO) and tea tree oil (TTO) were thoroughly characterized to gain insight into their nano-size distribution. The present work also aimed to reconnoiter the sustainable synthesis conditions to estimate the efficacy of EOs in bulk and EO-loaded nanoliposomes with multi-functional entities. Following a detailed nano-size characterization of in-house fabricated EO-loaded nanoliposomes, the antifungal efficacy was tested by executing the mycelial growth inhibition (MGI) test using Trichophyton rubrum fungi as a test model. The dynamic light scattering (DLS) profile of as-fabricated EO-loaded nanoliposomes revealed the mean size, polydispersity index (PdI), and zeta potential values as 37.12 ± 1.23 nm, 0.377 ± 0.007, and -36.94 ± 0.36 mV, respectively. The sphere-shaped morphology of CEO and TTO-loaded nanoliposomes was confirmed by a scanning electron microscope (SEM). The existence of characteristic functional bands in all tested counterparts was demonstrated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Compared to TTO-loaded nanoliposomes, the CEO-loaded nanoliposomes exhibited a maximum entrapment efficacy of 91.57 ± 2.5%. The CEO-loaded nanoliposome fraction, prepared using 1.5 µL/mL concentration, showed the highest MGI of 98.4 ± 0.87% tested against T. rubrum strains compared to the rest of the formulations.


Asunto(s)
Aceites Volátiles , Syzygium , Antifúngicos/química , Antifúngicos/farmacología , Aceite de Clavo/farmacología , Composición de Medicamentos , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Syzygium/química
10.
Materials (Basel) ; 15(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36079518

RESUMEN

CO2 adsorption on bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on pyridinic N3-doped graphene (PNG) was investigated by employing the density functional theory. First, the interaction of Co13 and Cu13 with PNG was analyzed by spin densities, interaction energies, charge transfers, and HUMO-LUMO gaps. According to the interaction energies, the Co13 nanocluster was adsorbed more efficiently than Cu13 on the PNG. The charge transfer indicated that the Co13 nanocluster donated more charges to the PNG nanoflake than the Cu13 nanocluster. The HUMO-LUMO gap calculations showed that the PNG improved the chemical reactivity of both Co13 and Cu13 nanoclusters. When the CO2 was adsorbed on the bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on the PNG, it experienced a bond elongation and angle bending in both systems. In addition, the charge transfer from the nanoclusters to the CO2 molecule was observed. This study proved that Co13/PNG and Cu13/PNG composites are adequate candidates for CO2 adsorption and activation.

11.
Materials (Basel) ; 15(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806834

RESUMEN

Graphene with defects is a vital support material since it improves the catalytic activity and stability of nanoparticles. Here, a density functional theory study was conducted to investigate the stability, energy, and reactivity properties of NinPdn (n = 1-3) clusters supported on graphene with different defects (i.e., graphene with monovacancy and pyridinic N-doped graphene with one, two, and three N atoms). On the interaction between the clusters and graphene with defects, the charge was transferred from the clusters to the modified graphene, and it was observed that the binding energy between them was substantially higher than that previously reported for Pd-based clusters supported on pristine graphene. The vertical ionization potential calculated for the clusters supported on modified graphene decreased compared with that calculated for free clusters. In contrast, vertical electron affinity values for the clusters supported on graphene with defects increased compared with those calculated for free clusters. In addition, the chemical hardness calculated for the clusters supported on modified graphene was decreased compared with free clusters, suggesting that the former may exhibit higher reactivity than the latter. Therefore, it could be inferred that graphene with defects is a good support material because it enhances the stability and reactivity of the Pd-based alloy clusters supported on PNG.

12.
Front Nutr ; 9: 874763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662955

RESUMEN

Nowadays, dairy products, especially fermented products such as yogurt, fromage frais, sour cream and custard, are among the most studied foods through tribological analysis due to their semi-solid appearance and close relationship with attributes like smoothness, creaminess and astringency. In tribology, dairy products are used to provide information about the friction coefficient (CoF) generated between tongue, palate, and teeth through the construction of a Stribeck curve. This provides important information about the relationship between friction, food composition, and sensory attributes and can be influenced by many factors, such as the type of surface, tribometer, and whether saliva interaction is contemplated. This work will review the most recent and relevant information on tribological studies, challenges, opportunity areas, saliva interactions with dairy proteins, and their relation to dairy product sensory.

13.
Front Chem ; 9: 784461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917591

RESUMEN

In this study, novel nanostructures of aluminum base metal-organic framework (Al-MOF) samples were synthesized using a sustainable, non-toxic, and cost-effective green synthesis route. Satureja hortensis extract was used as an effective source of linker for the development of the Al-MOF structures. The Fourier-transformed infrared (FTIR) spectrum confirmed the presence of characterization bonds related to the Al-MOF nanostructures synthesized by the green synthesis route. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the sample synthesized by Na2-CA was composed of multilayers, although it was agglomerated, but it had dispersed and occurred in spherical particles, indicating active organic matter. N2 adsorption/desorption isotherms demonstrated the significant porosity of the Al-MOF samples that facilitate the high potential of these nanostructures in medical applications. The anticancer treatment of Al-MOF samples was performed with different concentrations using the MTT standard method with untreated cancer cells for 24 and 48 h periods. The results exhibited the significant anticancer properties of Al-MOF samples developed in this study when compared with other MOF samples. Thus, the development of a novel Al-MOF and its application as a natural linker can influence the anticancer treatment of the samples. According to the results, the products developed in this study can be used in more applications such as biosensors, catalysts, and novel adsorbents.

14.
J Fungi (Basel) ; 7(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34947015

RESUMEN

The use of metal nanoparticles is considered a good alternative to control phytopathogenic fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe) have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag nanoparticles have been the most investigated nanoparticles due to their good antifungal activities, followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis methods have been used to produce these nanoparticles with different shapes and sizes, which have shown outstanding antifungal activities. This review shows the success of the use of metal nanoparticles to control phytopathogenic fungi in agriculture.

15.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947212

RESUMEN

To reduce the CO2 concentration in the atmosphere, its conversion to different value-added chemicals plays a very important role. Nevertheless, the stable nature of this molecule limits its conversion. Therefore, the design of highly efficient and selective catalysts for the conversion of CO2 to value-added chemicals is required. Hence, in this work, the CO2 adsorption on Pt4-xCux (x = 0-4) sub-nanoclusters deposited on pyridinic N-doped graphene (PNG) was studied using the density functional theory. First, the stability of Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG was analyzed. Subsequently, the CO2 adsorption on Pt4-xCux (x = 0-4) sub-nanoclusters deposited on PNG was computed. According to the binding energies of the Pt4-xCux (x = 0-4) sub-nanoclusters on PNG, it was observed that PNG is a good material to stabilize the Pt4-xCux (x = 0-4) sub-nanoclusters. In addition, charge transfer occurred from Pt4-xCux (x = 0-4) sub-nanoclusters to the PNG. When the CO2 molecule was adsorbed on the Pt4-xCux (x = 0-4) sub-nanoclusters supported on the PNG, the CO2 underwent a bond length elongation and variations in what bending angle is concerned. In addition, the charge transfer from Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG to the CO2 molecule was observed, which suggests the activation of the CO2 molecule. These results proved that Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG are adequate candidates for CO2 adsorption and activation.

16.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884770

RESUMEN

Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Nanotubos de Carbono/química , Óxidos de Nitrógeno/análisis , Contaminación del Aire/análisis , Combustibles Fósiles/efectos adversos , Nanotecnología , Emisiones de Vehículos/análisis
17.
Molecules ; 26(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771098

RESUMEN

The design and manufacture of highly efficient nanocatalysts for the oxygen reduction reaction (ORR) is key to achieve the massive use of proton exchange membrane fuel cells. Up to date, Pt nanocatalysts are widely used for the ORR, but they have various disadvantages such as high cost, limited activity and partial stability. Therefore, different strategies have been implemented to eliminate or reduce the use of Pt in the nanocatalysts for the ORR. Among these, Pt-free metal nanocatalysts have received considerable relevance due to their good catalytic activity and slightly lower cost with respect to Pt. Consequently, nowadays, there are outstanding advances in the design of novel Pt-free metal nanocatalysts for the ORR. In this direction, combining experimental findings and theoretical insights is a low-cost methodology-in terms of both computational cost and laboratory resources-for the design of Pt-free metal nanocatalysts for the ORR in acid media. Therefore, coupled experimental and theoretical investigations are revised and discussed in detail in this review article.

18.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641030

RESUMEN

Chitosan-gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.

19.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204196

RESUMEN

Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load-displacement curve and major absorption of energy.

20.
Materials (Basel) ; 14(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279276

RESUMEN

Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...