Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892438

RESUMEN

The strength of inhibitory neurotransmission depends on intracellular neuronal chloride concentration, primarily regulated by the activity of cation-chloride cotransporters NKCC1 (Sodium-Potassium-Chloride Cotransporter 1) and KCC2 (Potassium-Chloride Cotransporter 2). Brain-derived neurotrophic factor (BDNF) influences the functioning of these co-transporters. BDNF is synthesized from precursor proteins (proBDNF), which undergo proteolytic cleavage to yield mature BDNF (mBDNF). While previous studies have indicated the involvement of BDNF signaling in the activity of KCC2, its specific mechanisms are unclear. We investigated the interplay between both forms of BDNF and chloride homeostasis in rat hippocampal neurons and in utero electroporated cortices of rat pups, spanning the behavioral, cellular, and molecular levels. We found that both pro- and mBDNF play a comparable role in immature neurons by inhibiting the capacity of neurons to extrude chloride. Additionally, proBDNF increases the endocytosis of KCC2 while maintaining a depolarizing shift of EGABA in maturing neurons. Behaviorally, proBDNF-electroporated rat pups in the somatosensory cortex exhibit sensory deficits, delayed huddling, and cliff avoidance. These findings emphasize the role of BDNF signaling in regulating chloride transport through the modulation of KCC2. In summary, this study provides valuable insights into the intricate interplay between BDNF, chloride homeostasis, and inhibitory synaptic transmission, shedding light on the underlying cellular mechanisms involved.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cloruros , Homeostasis , Cotransportadores de K Cl , Neuronas , Simportadores , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Simportadores/metabolismo , Neuronas/metabolismo , Ratas , Cloruros/metabolismo , Hipocampo/metabolismo , Femenino , Precursores de Proteínas/metabolismo , Células Cultivadas , Miembro 2 de la Familia de Transportadores de Soluto 12
2.
Front Mol Neurosci ; 17: 1372662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660387

RESUMEN

The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.

3.
Front Cell Neurosci ; 17: 1253424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881493

RESUMEN

K+/Cl- cotransporter 2 (KCC2) is a major Cl- extruder in mature neurons and is responsible for the establishment of low intracellular [Cl-], necessary for fast hyperpolarizing GABAA-receptor mediated synaptic inhibition. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a pH regulatory protein expressed in neurons and glial cells. An interactome study identified NBCe1 as a possible interaction partner of KCC2. In this study, we investigated the putative effect of KCC2/NBCe1 interaction in baseline and the stimulus-induced phosphorylation pattern and function of KCC2. Primary mouse hippocampal neuronal cultures from wildtype (WT) and Nbce1-deficient mice, as well as HEK-293 cells stably transfected with KCC2WT, were used. The results show that KCC2 and NBCe1 are interaction partners in the mouse brain. In HEKKCC2 cells, pharmacological inhibition of NBCs with S0859 prevented staurosporine- and 4-aminopyridine (4AP)-induced KCC2 activation. In mature cultures of hippocampal neurons, however, S0859 completely inhibited postsynaptic GABAAR and, thus, could not be used as a tool to investigate the role of NBCs in GABA-dependent neuronal networks. In Nbce1-deficient immature hippocampal neurons, baseline phosphorylation of KCC2 at S940 was downregulated, compared to WT, and exposure to staurosporine failed to reduce pKCC2 S940 and T1007. In Nbce1-deficient mature neurons, baseline levels of pKCC2 S940 and T1007 were upregulated compared to WT, whereas after 4AP treatment, pKCC2 S940 was downregulated, and pKCC2 T1007 was further upregulated. Functional experiments showed that the levels of GABAAR reversal potential, baseline intracellular [Cl-], Cl- extrusion, and baseline intracellular pH were similar between WT and Nbce1-deficient neurons. Altogether, our data provide a primary description of the properties of KCC2/NBCe1 protein-protein interaction and implicate modulation of stimulus-mediated phosphorylation of KCC2 by NBCe1/KCC2 interaction-a mechanism with putative pathophysiological relevance.

4.
Front Physiol ; 12: 798066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955901

RESUMEN

In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl-)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl- permeable ion channel. During neuron maturation the (Cl-)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl- extrusion and determining the resting level of (Cl-)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.

5.
Mol Psychiatry ; 26(12): 7582-7595, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34290367

RESUMEN

Oxytocin is an important regulator of the social brain. In some animal models of autism, notably in Magel2tm1.1Mus-deficient mice, peripheral administration of oxytocin in infancy improves social behaviors until adulthood. However, neither the mechanisms responsible for social deficits nor the mechanisms by which such oxytocin administration has long-term effects are known. Here, we aimed to clarify these oxytocin-dependent mechanisms, focusing on social memory performance. Using in situ hybridization (RNAscope), we have established that Magel2 and oxytocin receptor are co-expressed in the dentate gyrus and CA2/CA3 hippocampal regions involved in the circuitry underlying social memory. Then, we have shown that Magel2tm1.1Mus-deficient mice, evaluated in a three-chamber test, present a deficit in social memory. Next, in hippocampus, we conducted neuroanatomical and functional studies using immunostaining, oxytocin-binding experiments, ex vivo electrophysiological recordings, calcium imaging and biochemical studies. We demonstrated: an increase of the GABAergic activity of CA3-pyramidal cells associated with an increase in the quantity of oxytocin receptors and of somatostatin interneurons in both DG and CA2/CA3 regions. We also revealed a delay in the GABAergic development sequence in Magel2tm1.1Mus-deficient pups, linked to phosphorylation modifications of KCC2. Above all, we demonstrated the positive effects of subcutaneous administration of oxytocin in the mutant neonates, restoring hippocampal alterations and social memory at adulthood. Although clinical trials are debated, this study highlights the mechanisms by which peripheral oxytocin administration in neonates impacts the brain and demonstrates the therapeutic value of oxytocin to treat infants with autism spectrum disorders.


Asunto(s)
Trastorno Autístico , Oxitocina , Animales , Antígenos de Neoplasias/uso terapéutico , Trastorno Autístico/tratamiento farmacológico , Hipocampo/metabolismo , Ratones , Oxitocina/uso terapéutico , Proteínas , Receptores de Oxitocina/metabolismo , Conducta Social
6.
Sci Signal ; 14(683)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006608

RESUMEN

Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor ß-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and ß-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of ß-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.


Asunto(s)
Leptina , Neuronas , Factores de Intercambio de Guanina Nucleótido Rho , Animales , Femenino , Hipocampo/citología , Leptina/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo
7.
J Cell Sci ; 133(20)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32989040

RESUMEN

Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using in utero electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex. Our results show that enhancing Smo activity during development accelerates the shift from depolarizing to hyperpolarizing GABA in a manner dependent on functional expression of potassium-chloride cotransporter type 2 (KCC2, also known as SLC12A5). On the other hand, blocking Smo activity maintains the GABA response in a depolarizing state in mature cortical neurons, resulting in altered chloride homeostasis and increased seizure susceptibility. This study reveals unexpected functions of Smo signaling in the regulation of chloride homeostasis, through control of KCC2 cell-surface stability, and the timing of the GABA excitatory-to-inhibitory shift in brain maturation.


Asunto(s)
Proteínas Hedgehog , Corteza Somatosensorial , Animales , Proteínas Hedgehog/metabolismo , Receptores Patched , Ratas , Receptor Smoothened/genética , Corteza Somatosensorial/metabolismo , Ácido gamma-Aminobutírico
8.
PLoS One ; 15(5): e0232967, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32413057

RESUMEN

The pivotal role of KCC2 and NKCC1 in development and maintenance of fast inhibitory neurotransmission and their implication in severe human diseases arouse interest in posttranscriptional regulatory mechanisms such as (de)phosphorylation. Staurosporine (broad kinase inhibitor) and N-ethylmalemide (NEM) that modulate kinase and phosphatase activities enhance KCC2 and decrease NKCC1 activity. Here, we investigated the regulatory mechanism for this reciprocal regulation by mass spectrometry and immunoblot analyses using phospho-specific antibodies. Our analyses revealed that application of staurosporine or NEM dephosphorylates Thr1007 of KCC2, and Thr203, Thr207 and Thr212 of NKCC1. Dephosphorylation of Thr1007 of KCC2, and Thr207 and Thr212 of NKCC1 were previously demonstrated to activate KCC2 and to inactivate NKCC1. In addition, application of the two agents resulted in dephosphorylation of the T-loop and S-loop phosphorylation sites Thr233 and Ser373 of SPAK, a critical kinase in the WNK-SPAK/OSR1 signaling module mediating phosphorylation of KCC2 and NKCC1. Taken together, these results suggest that reciprocal regulation of KCC2 and NKCC1 via staurosporine and NEM is based on WNK-SPAK/OSR1 signaling. The key regulatory phospho-site Ser940 of KCC2 is not critically involved in the enhanced activation of KCC2 upon staurosporine and NEM treatment, as both agents have opposite effects on its phosphorylation status. Finally, NEM acts in a tissue-specific manner on Ser940, as shown by comparative analysis in HEK293 cells and immature cultured hippocampal neurons. In summary, our analyses identified phospho-sites that are responsive to staurosporine or NEM application. This provides important information towards a better understanding of the cooperative interactions of different phospho-sites.


Asunto(s)
Etilmaleimida/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Estaurosporina/farmacología , Simportadores/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Cotransportadores de K Cl
9.
Sci Signal ; 12(603)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615899

RESUMEN

KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.


Asunto(s)
Red Nerviosa/metabolismo , Células Piramidales/metabolismo , Simportadores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/crecimiento & desarrollo , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Potenciales de la Membrana/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Fosforilación , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Simportadores/genética , Ácido gamma-Aminobutírico/farmacología , Cotransportadores de K Cl
10.
Front Cell Neurosci ; 12: 273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210299

RESUMEN

In the mature healthy mammalian neuronal networks, γ-aminobutyric acid (GABA) mediates synaptic inhibition by acting on GABAA and GABAB receptors (GABAAR, GABABR). In immature networks and during numerous pathological conditions the strength of GABAergic synaptic inhibition is much less pronounced. In these neurons the activation of GABAAR produces paradoxical depolarizing action that favors neuronal network excitation. The depolarizing action of GABAAR is a consequence of deregulated chloride ion homeostasis. In addition to depolarizing action of GABAAR, the GABABR mediated inhibition is also less efficient. One of the key molecules regulating the GABAergic synaptic transmission is the brain derived neurotrophic factor (BDNF). BDNF and its precursor proBDNF, can be released in an activity-dependent manner. Mature BDNF operates via its cognate receptors tropomyosin related kinase B (TrkB) whereas proBDNF binds the p75 neurotrophin receptor (p75NTR). In this review article, we discuss recent finding illuminating how mBDNF-TrkB and proBDNF-p75NTR signaling pathways regulate GABA related neurotransmission under physiological conditions and during epilepsy.

11.
Elife ; 72018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30106375

RESUMEN

Brain computations rely on a proper balance between excitation and inhibition which progressively emerges during postnatal development in rodent. γ-Aminobutyric acid (GABA) neurotransmission supports inhibition in the adult brain but excites immature rodent neurons. Alterations in the timing of the GABA switch contribute to neurological disorders, so unveiling the involved regulators may be a promising strategy for treatment. Here we show that the adipocyte hormone leptin sets the tempo for the emergence of GABAergic inhibition in the newborn rodent hippocampus. In the absence of leptin signaling, hippocampal neurons show an advanced emergence of GABAergic inhibition. Conversely, maternal obesity associated with hyperleptinemia delays the excitatory to inhibitory switch of GABA action in offspring. This study uncovers a developmental function of leptin that may be linked to the pathogenesis of neurological disorders and helps understanding how maternal environment can adversely impact offspring brain development.


Asunto(s)
Adipocitos/metabolismo , Antagonistas del GABA/metabolismo , Hipocampo/metabolismo , Leptina/genética , Animales , Animales Recién Nacidos , Desarrollo Embrionario/genética , Antagonistas del GABA/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/patología , Leptina/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
13.
Sci Rep ; 7(1): 16452, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184062

RESUMEN

KCC2 is a neuron specific K+-Cl- co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into "head" and "core" domains connected by a flexible "linker". Dimers are asymmetrical and display a bent "S-shape" architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.

14.
eNeuro ; 4(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785725

RESUMEN

A plethora of neurological disorders are associated with alterations in the expression and localization of potassium-chloride cotransporter type 2 (KCC2), making KCC2 a critical player in neuronal function and an attractive target for therapeutic treatment. The activity of KCC2 is determined primarily by the rates of its surface insertion and internalization. Currently the domains of KCC2 dictating its trafficking and endocytosis are unknown. Here, using live-cell immunolabeling and biotinylation of KCC2 proteins expressed in murine neuroblastoma N2a cells, human embryonic kidney 293 cells, or primary cultures of rat hippocampal neurons, we identified a novel role for the intracellular N and C termini in differentially regulating KCC2 surface expression. We report that the N terminus is required for KCC2 insertion into the plasma membrane, whereas the C terminus is critical for the membrane stability of KCC2. Our results provide novel insights into the structure-function role of specific KCC2 domains and open perspectives in exploring structural organization of this protein.


Asunto(s)
Membrana Celular/metabolismo , Simportadores/metabolismo , Animales , Biotinilación , Línea Celular Tumoral , Células HEK293 , Hipocampo/metabolismo , Humanos , Espacio Intracelular , Ratones , Mutación , Estabilidad Proteica , Ratas Wistar , Relación Estructura-Actividad , Simportadores/genética , Cotransportadores de K Cl
15.
PLoS One ; 12(6): e0179968, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662098

RESUMEN

Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl-). They are divided into K+-Cl- outward transporters (KCCs), the Na+-K+-Cl- (NKCCs) and Na+-Cl- (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs are established in the genome since eukaryotes and metazoans, respectively. Most of the physiological and functional data were obtained from vertebrate species. To get insights into the basal functional properties of KCCs and N(K)CCs in the metazoan lineage, we cloned and characterized KCC and N(K)CC from the cnidarian Hydra vulgaris. HvKCC is composed of 1,032 amino-acid residues. Functional analyses revealed that hvKCC mediates a Na+-independent, Cl- and K+ (Tl+)-dependent cotransport. The classification of hvKCC as a functional K-Cl cotransporter is furthermore supported by phylogenetic analyses and a similar structural organization. Interestingly, recently obtained physiological analyses indicate a role of cnidarian KCCs in hyposmotic volume regulation of nematocytes. HvN(K)CC is composed of 965 amino-acid residues. Phylogenetic analyses and structural organization suggest that hvN(K)CC is a member of the N(K)CC subfamily. However, no inorganic ion cotransport function could be detected using different buffer conditions. Thus, hvN(K)CC is a N(K)CC subfamily member without a detectable inorganic ion cotransporter function. Taken together, the data identify two non-bilaterian solute carrier 12 (SLC12) gene family members, thereby paving the way for a better understanding of the evolutionary paths of this important cotransporter family.


Asunto(s)
Hydra/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Estructura Secundaria de Proteína , Simportadores de Cloruro de Sodio-Potasio/química , Simportadores de Cloruro de Sodio-Potasio/genética
16.
Sci Signal ; 8(383): ra65, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26126716

RESUMEN

Activation of Cl(-)-permeable γ-aminobutyric acid type A (GABAA) receptors elicits synaptic inhibition in mature neurons but excitation in immature neurons. This developmental "switch" in the GABA function depends on a postnatal decrease in intraneuronal Cl(-) concentration mediated by KCC2, a Cl(-)-extruding K(+)-Cl(-) cotransporter. We showed that the serine-threonine kinase WNK1 [with no lysine (K)] forms a physical complex with KCC2 in the developing mouse brain. Dominant-negative mutation, genetic depletion, or chemical inhibition of WNK1 in immature neurons triggered a hyperpolarizing shift in GABA activity by enhancing KCC2-mediated Cl(-) extrusion. This increase in KCC2 activity resulted from reduced inhibitory phosphorylation of KCC2 at two C-terminal threonines, Thr(906) and Thr(1007). Phosphorylation of both Thr(906) and Thr(1007) was increased in immature versus mature neurons. Together, these data provide insight into the mechanism regulating Cl(-) homeostasis in immature neurons, and suggest that WNK1-regulated changes in KCC2 phosphorylation contribute to the developmental excitatory-to-inhibitory GABA sequence.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Antígenos de Histocompatibilidad Menor , Neuronas/citología , Células PC12 , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Simportadores/genética , Proteína Quinasa Deficiente en Lisina WNK 1 , Ácido gamma-Aminobutírico/genética , Cotransportadores de K Cl
17.
J Cell Biol ; 209(5): 671-86, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26056138

RESUMEN

Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor ß-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Espinas Dendríticas/metabolismo , Transducción de Señal/fisiología , Simportadores/metabolismo , Citoesqueleto de Actina/genética , Animales , Secuencia de Bases , Cofilina 1/genética , Cofilina 1/metabolismo , Espinas Dendríticas/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosforilación/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Simportadores/genética , Sinapsis/genética , Sinapsis/metabolismo , Cotransportadores de K Cl
18.
J Neurosci ; 34(40): 13516-34, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274828

RESUMEN

GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Endocitosis/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Endocitosis/fisiología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/fisiología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
19.
EMBO Rep ; 15(7): 766-74, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928908

RESUMEN

The KCC2 cotransporter establishes the low neuronal Cl(-) levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl(-)-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EG ly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE.


Asunto(s)
Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Simportadores/genética , Simportadores/metabolismo , Potenciales de Acción , Alelos , Animales , Estudios de Casos y Controles , Línea Celular , Cloruros/metabolismo , Frecuencia de los Genes , Variación Genética , Hipocampo/metabolismo , Humanos , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Células Piramidales/metabolismo , Quebec , Ratas , Simportadores/química , Cotransportadores de K Cl
20.
Front Cell Neurosci ; 8: 27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24567703

RESUMEN

In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...