Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 623: 561-573, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35598485

RESUMEN

Layered transition metal selenides have garnered increased attention in recent times as non-noble metal bifunctional electrocatalysts for electrochemical water splitting. Tungsten diselenide @ tin diselenide heterostructures in the present study significantly increase the electrochemical performance of oxygen evolution reaction with a low overpotential of 250 mV at 10 mA cm-2 and high stability for 16 h (8.9 % loss), hydrogen evolution reaction with a low overpotential of 180 mV at 10 mA cm-2 with a 21.9% loss in 16 h. The overall water splitting using a lab-size electrolyzer shows a low cell voltage (1.52 V @ 10 mA cm-2) and high durability for 50 h (15.2% loss @ 10 mA cm-2 and 4.4% loss @ 50 mA cm-2). As a result, the heterostructures have demonstrated their ability to handle multiple challenges in energy conversion systems due to their unique properties.

2.
RSC Adv ; 9(3): 1335-1340, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35518026

RESUMEN

This work is primarily focused on indium sulfide (ß-In2S3) and cobalt (Co)-doped ß-In2S3 nanoflakes as photoanodes for water oxidation. The incorporation of cobalt introduces new dopant energy levels increasing visible light absorption and leading to improved photo-activity. In addition, cobalt ion centers in ß-In2S3 act as potential catalytic sites to promote electro-activity. 5 mol% Co-doped ß-In2S3 nanoflakes when tested for photoelectrochemical water splitting exhibited a photocurrent density of 0.69 mA cm-2 at 1.23 V, much higher than that of pure ß-In2S3.

3.
ACS Appl Mater Interfaces ; 6(10): 7214-22, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24784542

RESUMEN

A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

4.
ChemSusChem ; 7(5): 1295-300, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24520018

RESUMEN

Functionalized graphene sheets (FGSs) comprise a unique member of the carbon family, demonstrating excellent electrical conductivity and mechanical strength. However, the detailed chemical composition of this material is still unclear. Herein, we take advantage of the fluorination process to semiquantitatively probe the defects and functional groups on graphene surface. Functionalized graphene sheets are used as substrate for low-temperature (<150 °C) direct fluorination. The fluorine content has been modified to investigate the formation mechanism of different functional groups such as C-F, CF2, O-CF2 and (C=O)F during fluorination. The detailed structure and chemical bonds are simulated by density functional theory (DFT) and quantified experimentally by nuclear magnetic resonance (NMR). The electrochemical properties of fluorinated graphene are also discussed extending the use of graphene from fundamental research to practical applications.


Asunto(s)
Flúor/química , Grafito/química , Modelos Químicos , Propiedades de Superficie , Conductividad Eléctrica , Electroquímica , Halogenación , Espectroscopía de Resonancia Magnética , Temperatura
5.
Nano Lett ; 12(8): 4124-30, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22800407

RESUMEN

A cost-effective and scalable method is developed to prepare a core-shell structured Si/B(4)C composite with graphite coating with high efficiency, exceptional rate performance, and long-term stability. In this material, conductive B(4)C with a high Mohs hardness serves not only as micro/nano-millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B(4)C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B(4)C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ∼822 mAh·g(-1) (based on the weight of the entire electrode, including binder and conductive carbon) and ∼94% capacity retention over 100 cycles at 0.3 C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications and a good opportunity for large-scale manufacturing using commercially available materials and technologies.

6.
Nano Lett ; 12(4): 1784-8, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22432855

RESUMEN

In this study, vertical nanowire arrays of MoO(3-x) grown on metallic substrates with diameters of ~90 nm show high-capacity retention of ~630 mAhg(-1) for up to 20 cycles at 50 mAg(-1) current density. Particularly, they exhibit a capacity retention of ~500 mAhg(-1) in the voltage window of 0.7-0.1 V, much higher than the theoretical capacity of graphite. In addition, 10 nm Si-coated MoO(3-x) nanowire arrays have shown a capacity retention of ~780 mAhg(-1), indicating that hybrid materials are the next generation materials for lithium ion batteries.

7.
Nano Lett ; 9(2): 612-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19159325

RESUMEN

In this report, we present a simple and generic concept involving metal nanoclusters supported on metal oxide nanowires as stable and high capacity anode materials for Li-ion batteries. Specifically, SnO(2) nanowires covered with Sn nanoclusters exhibited an exceptional capacity of >800 mAhg(-1) over hundred cycles with a low capacity fading of less than 1% per cycle. Post lithiation analyses after 100 cycles show little morphological degradation of the hybrid nanowires. The observed, enhanced stability with high capacity retention is explained with the following: (a) the spacing between Sn nanoclusters on SnO(2) nanowires allowed the volume expansion during Li alloying and dealloying; (b) high available surface area of Sn nanoclusters for Li alloying and dealloying; and (c) the presence of Sn nanoclusters on SnO(2) allowed reversible reaction between Sn and Li(2)O to produce both Sn and SnO phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...