Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5758, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982085

RESUMEN

Despite the significance of H2O2-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between H2O2 and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of H2O2, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain H2O2-metal complexes that employs neat H2O2 as both solvent and ligand. SnCl4 effectively binds H2O2, forming a SnCl4(H2O2)2 complex, as confirmed by 119Sn and 17O NMR spectroscopy. Crystalline adducts, SnCl4(H2O2)2·H2O2·18-crown-6 and 2[SnCl4(H2O2)(H2O)]·18-crown-6, are isolated and characterized by X-ray diffraction, providing the complete characterization of the hydrogen bonding of H2O2 ligands including geometric parameters and energy values. DFT analysis reveals the synergy between a coordinative bond of H2O2 with metal cation and its hydrogen bonding with a second coordination sphere. This synergism of primary and secondary interactions might be a key to understanding H2O2 reactivity in biological systems.

2.
J Colloid Interface Sci ; 660: 780-791, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277835

RESUMEN

Highly soluble germanium oxide,an amorphous macroreticular form of germanium oxide, was used as a precursor for the deposition of GeS2on reduced graphene oxide (rGO) through a low-temperature, wet-chemistry process. Thermal treatment of the solid provided an ultrathin rGO - supported amorphous GeS2coating. The GeS2@rGO composite was tested as a lithium ion battery (LIB) anode. Leveraging the versatility of wet chemistry processing, we employed strategies initially developed for mitigating polysulfide shuttle effects in lithium-sulfur batteries to enhance anode performance. The anode exhibited exceptional stability, surpassing 1000 cycles, with charge capacities exceeding 1220 and 870 mAh.g-1 at rates of 2 and 5 A.g-1, respectively. Performance improvements were achieved by minimizing GeS2 grain size using the non-ionic surfactant Triton X-100 during synthesis and preventing polysulfide shuttle effects through a negatively charged thick glass fiber separator, fluoroethylene carbonate additive (FEC) in EC:DEC (ethylene carbonate: diethyl carbonate) solvent, and a polyacrylic acid (PAA) binder. These cumulative modifications more than tripled the charge capacity of the germanium sulfide LIB anode. Feasibility was further demonstrated through full cell studies using a LiCoO2 counter electrode.

3.
Phys Chem Chem Phys ; 26(6): 5195-5206, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261463

RESUMEN

The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodooethanone) peroxosolvate C13H20I2N2O2·H2O2 (1) and four new crystalline compounds, 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O2·H2O2 (2), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodoethanone) peroxosolvate C13H20I2N2O5·0.5H2O2 (3), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O5·H2O2 (4), and 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-chloroethanone) peroxosolvate C13H20Cl2N2O5·H2O2 (5). Compounds 2-5 were synthesized for the first time and their crystal structures were determined by single-crystal X-ray diffractometry (SCXRD). To the best of our knowledge, 3-5 are unprecedented crystalline hydrogen peroxide adducts of organic hydroperoxides (R-OOH). Short intermolecular contacts between halogen and hydroperoxo oxygen atoms were found in 1-3. The halogen bonding of C-I(Br) fragments with dioxygen species in compounds 1-3 as well as in the previously reported cocrystal of diacetone diperoxide with triodotrinitrobenzene (6) was identified through reduced density gradient analysis, Hirshfeld surface analysis, and Bader analysis of crystalline electron density. The interactions were quantified using the electron density topological properties acquired from the periodic DFT calculations and evaluated to lie in the range of 9-19 kJ mol-1. A distinctive spectral feature was revealed for this type of interaction, involving a red shift of the characteristic O-O stretching vibration by about 6 cm-1, which appeared in IR spectra as a narrow low-intensity band in the region 837-872 cm-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...