Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eye (Lond) ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396030

RESUMEN

The cornea needs to be transparent to visible light and precisely curved to provide the correct refractive power. Both properties are governed by its structure. Corneal transparency arises from constructive interference of visible light due to the relatively ordered arrangement of collagen fibrils in the corneal stroma. The arrangement is controlled by the negatively charged proteoglycans surrounding the fibrils. Small changes in fibril organisation can be tolerated but larger changes cause light scattering. Corneal keratocytes do not scatter light because their refractive index matches that of the surrounding matrix. When activated, however, they become fibroblasts that have a lower refractive index. Modelling shows that this change in refractive index significantly increases light scatter. At the microscopic level, the corneal stroma has a lamellar structure, the parallel collagen fibrils within each lamella making a large angle with those of adjacent lamellae. X-ray scattering has shown that the lamellae have preferred orientations in the human cornea: inferior-superior and nasal-temporal in the central cornea and circumferential at the limbus. The directions at the centre of the cornea may help withstand the pull of the extraocular muscles whereas the pseudo-circular arrangement at the limbus supports the change in curvature between the cornea and sclera. Elastic fibres are also present; in the limbus they contain fibrillin microfibrils surrounding an elastin core, whereas at the centre of the cornea, they exist as thin bundles of fibrillin-rich microfibrils. We present a model based on the structure described above that may explain how the cornea withstands repeated pressure changes due to the ocular pulse.

2.
Eye Vis (Lond) ; 11(1): 8, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38414033

RESUMEN

BACKGROUND: Corneal cross-linking (CXL) using riboflavin and ultraviolet-A light (UVA) is a treatment used to prevent progression of keratoconus. This ex vivo study assesses the impact on CXL effectiveness, as measured by tissue enzymatic resistance and confocal microscopy, of including a pre-UVA corneal surface rinse with balanced salt solution (BSS) as part of the epithelium-off treatment protocol. METHODS: Sixty-eight porcine eyes, after epithelial debridement, were assigned to six groups in three experimental runs. Group 1 remained untreated. Groups 2-6 received a 16-min application of 0.1% riboflavin/Hydroxypropyl methylcellulose (HPMC) drops, after which Group 3 was exposed to 9 mW/cm2 UVA for 10 min, and Groups 4-6 underwent corneal surface rinsing with 0.25 mL, 1 mL or 10 mL BSS followed by 9 mW/cm2 UVA exposure for 10 min. Central corneal thickness (CCT) was recorded at each stage. Central 8.0 mm corneal buttons from all eyes were subjected to 0.3% collagenase digestion at 37 °C and the time required for complete digestion determined. A further 15 eyes underwent fluorescence confocal microscopy to assess the impact of rinsing on stromal riboflavin concentration. RESULTS: Application of riboflavin/HPMC solution led to an increase in CCT of 73 ± 14 µm (P < 0.01) after 16 min. All CXL-treated corneas displayed a 2-4 fold greater resistance to collagenase digestion than non-irradiated corneas. There was no difference in resistance between corneas that received no BSS rinse and those that received a 0.25 mL or 1 mL pre-UVA rinse, but each showed a greater level of resistance than those that received a 10 mL pre-UVA rinse (P < 0.05). Confocal microscopy demonstrated reduced stromal riboflavin fluorescence after rinsing. CONCLUSIONS: All protocols, with and without rinsing, were effective at enhancing the resistance to collagenase digestion, although resistance was significantly decreased, and stromal riboflavin fluorescence reduced with a 10 mL rinse. This suggests that a 10 mL surface rinse can reduce the efficacy of CXL through the dilution of the stromal riboflavin concentration.

3.
J Refract Surg ; 39(9): 620-626, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37675907

RESUMEN

PURPOSE: To explore the diffusion depth and green light corneal cross-linking efficacy of different rose bengal (Rb) infiltration times in rabbit eyes. METHODS: Twenty-eight fresh rabbit eyes were deepithelialized and infiltrated in 0.1% Rb solution for 2 to 30 minutes. Corneal frozen sections were cut and Rb diffusion depth was observed under the confocal microscope. A further 36 rabbits were randomly divided into eight groups according to the type of treatment (control, Rb infiltration only without irradiation, rose bengal/green light [RGX] for different infiltration times, or riboflavin/ultraviolet radiation [UVX]). The corneas' resistance to keratolysis and biomechanical properties were measured after treatment. RESULTS: After 2, 10, 20, and 30 minutes of infiltration, Rb penetration depths in the corneal stroma were 100, 150, 200, and 270 µm, respectively. The times for complete digestion of the RGX 10 minutes (14.0 ± 1.4 hours), RGX 20 minutes (18.8 ± 1.1 hours), and UVX (51.2 ± 7.2 hours) groups were statistically greater than that of the control group (7.2 ± 1.1 hours). At 10% extension, the Young's modulus of the RGX 20 minutes (36.59 ± 4.90 MPa) and UVX (40.89 ± 2.57 MPa) groups was statistically greater than that of the control group (21.76 ± 5.69 MPa). CONCLUSIONS: The diffusion depth of Rb in corneal stroma increased by prolonging the infiltration time. The longer the infiltration time, the better the RGX effect. RGX for 20 minutes showed the best cross-linking efficacy among all RGX groups, albeit not as good as UVX. [J Refract Surg. 2023;39(9):620-626.].


Asunto(s)
Reticulación Corneal , Rayos Ultravioleta , Animales , Conejos , Rosa Bengala , Luz , Córnea
4.
PLoS One ; 18(5): e0285418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37159453

RESUMEN

Fibrillin-1 is a pivotal structural component of the kidney's glomerulus and peritubular tissue. Mutations in the fibrillin-1 gene result in Marfan syndrome (MFS), an autosomal dominant disease of the connective tissue. Although the kidney is not considered a classically affected organ in MFS, several case reports describe glomerular disease in patients. Therefore, this study aimed to characterize the kidney in the mgΔlpn-mouse model of MFS. Affected animals presented a significant reduction of glomerulus, glomerulus-capillary, and urinary space, and a significant reduction of fibrillin-1 and fibronectin in the glomerulus. Transmission electron microscopy and 3D-ultrastructure analysis revealed decreased amounts of microfibrils which also appeared fragmented in the MFS mice. Increased collagen fibers types I and III, MMP-9, and α-actin were also observed in affected animals, suggesting a tissue-remodeling process in the kidney. Video microscopy analysis showed an increase of microvessel distribution coupled with reduction of blood-flow velocity, while ultrasound flow analysis revealed significantly lower blood flow in the kidney artery and vein of the MFS mice. The structural and hemodynamic changes of the kidney indicate the presence of kidney remodeling and vascular resistance in this MFS model. Both processes are associated with hypertension which is expected to worsen the cardiovascular phenotype in MFS.


Asunto(s)
Síndrome de Marfan , Animales , Ratones , Fibrilina-1/genética , Síndrome de Marfan/genética , Modelos Animales de Enfermedad , Riñón , Matriz Extracelular , Colágeno Tipo I
5.
Eye (Lond) ; 37(12): 2511-2517, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36539601

RESUMEN

OBJECTIVE: To provide an insight into trends in corneal cross-linking (CXL) practice in the UK, including criteria for progression of corneal ectasia, identification of patients for CXL, the CXL procedure itself and post-operative management. METHODS: All ophthalmologist members of the UK Cross-linking (UK-CXL) Consortium were invited to complete an online survey about CXL practice for the year 2019. The data collected was anonymised by site and analysed with descriptive statistics. RESULTS: Responses were received from 16 individual CXL centres (16/38; 42% response rate) and the data represented ~2,000 CXL procedures performed in the UK in 2019. The commonest indication for CXL was progressive keratoconus. Between centres, there were variations in diagnostic evaluation, patient selection for CXL, the CXL procedure and the pre- and post-operative monitoring of patients. CONCLUSION: Consistent with the wide number of CXL treatment techniques described in the published literature world-wide, variations in the monitoring of corneal ectasia, indications for CXL, CXL practice and post-CXL follow-up were found to exist between UK-based CXL centres.


Asunto(s)
Queratocono , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Reticulación Corneal , Riboflavina/uso terapéutico , Rayos Ultravioleta , Dilatación Patológica/tratamiento farmacológico , Colágeno/uso terapéutico , Reactivos de Enlaces Cruzados/uso terapéutico , Queratocono/diagnóstico , Queratocono/tratamiento farmacológico , Fotoquimioterapia/métodos , Reino Unido , Topografía de la Córnea
6.
J Refract Surg ; 38(7): 450-458, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35858194

RESUMEN

PURPOSE: To examine central corneal thickness (CCT) changes during in vivo rose bengal-green light corneal cross-linking (RG-CXL) and compare the CXL efficacy of different rose bengal formulations. METHODS: After epithelium removal, the right eyes of rabbits were immersed in rose bengal solution prepared by different solvents (water, phosphate buffered saline, dextran, and hydroxypropyl methylcellulos [HPMC]) for 2 or 20 minutes, then the rose bengal distribution in the corneal stroma was analyzed by confocal fluorescence detection. During the RG-CXL process, the CCT was measured at seven time points. The left eyes served as the untreated control group. Corneal enzymatic resistance and corneal biomechanics were tested to compare the RG-CXL efficacy. RESULTS: The rose bengal infiltration depths were 120 and 200 µm for the 2- and 20-minute groups, respectively. CCT increased significantly after infiltration, then decreased significantly in the first 200 seconds of irradiation and decreased slowly for the next 400 seconds. The CCT of the 20-minute groups was significantly thicker than that of the 2-minute groups (P < .0001). All RG-CXL treatments improved the corneal enzymatic resistance and corneal biomechanics, with the effects being greater in the 20-minute groups. The inclusion of 1.1% HPMC in the rose bengal formulation helped to maintain CCT during irradiation while not affecting either the infiltration of rose bengal or the efficacy of RG-CXL. CONCLUSIONS: Within the range studied, RG-CXL efficacy increased with infiltration time. The incorporation of a 20-minute infiltration of 0.1% rose bengal-1.1% HPMC into the RG-CXL procedure may further improve the safety of the treatment and its prospects for clinical use. [J Refract Surg. 2022;38(7):450-458.].


Asunto(s)
Riboflavina , Rosa Bengala , Animales , Colágeno/metabolismo , Córnea/metabolismo , Sustancia Propia/metabolismo , Reactivos de Enlaces Cruzados , Fármacos Fotosensibilizantes/uso terapéutico , Conejos , Riboflavina/farmacología , Riboflavina/uso terapéutico , Rosa Bengala/metabolismo , Rosa Bengala/farmacología , Rayos Ultravioleta
7.
Mar Biol ; 169(6): 78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35607419

RESUMEN

The protective carapace of Skogsbergia lerneri, a marine ostracod, is scratch-resistant and transparent. The compositional and structural organisation of the carapace that underlies these properties is unknown. In this study, we aimed to quantify and determine the distribution of chemical elements and chitin within the carapace of adult ostracods, as well as at different stages of ostracod development, to gain insight into its composition. Elemental analyses included X-ray absorption near-edge structure, X-ray fluorescence and X-ray diffraction. Nonlinear microscopy and spectral imaging were performed to determine chitin distribution within the carapace. High levels of calcium (20.3%) and substantial levels of magnesium (1.89%) were identified throughout development. Amorphous calcium carbonate (ACC) was detected in carapaces of all developmental stages, with the polymorph, aragonite, identified in A-1 and adult carapaces. Novel chitin-derived second harmonic generation signals (430/5 nm) were detected. Quantification of relative chitin content within the developing and adult carapaces identified negligible differences in chitin content between developmental stages and adult carapaces, except for the lower chitin contribution in A-2 (66.8 ± 7.6%) compared to A-5 (85.5 ± 10%) (p = 0.03). Skogsbergia lerneri carapace calcium carbonate composition was distinct to other myodocopid ostracods. These calcium polymorphs and ACC are described in other biological transparent materials, and with the consistent chitin distribution throughout S. lerneri development, may imply a biological adaptation to preserve carapace physical properties. Realisation of S. lerneri carapace synthesis and structural organisation will enable exploitation to manufacture biomaterials and biomimetics with huge potential in industrial and military applications.

8.
Adv Mater ; 34(21): e2109865, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35316534

RESUMEN

Riboflavin-5-phosphate (RF) is the most commonly used photosensitizer in corneal cross-linking (CXL), but its hydrophilicity and negative charge limit its penetration through the corneal epithelium into the stroma. To enhance the corneal permeability of RF and promote its efficacy in the treatment of keratoconus, novel hibiscus-like RF@ZIF-8 microsphere composites [6RF@ZIF-8 NF (nanoflake)] are prepared using ZIF-8 nanomaterials as carriers, which are characterized by their hydrophobicity, positive potential, biocompatibility, high loading capacities, and large surface areas. Both hematoxylin and eosin endothelial staining and TUNEL assays demonstrate excellent biocompatibility of 6RF@ZIF-8 NF. In in vivo studies, the 6RF@ZIF-8 NF displayed excellent corneal permeation, and outstanding transepithelial CXL (TE-CXL) efficacy, slightly better than the conventional CXL protocol. Furthermore, the special hibiscus-like structures of 6RF@ZIF-8 NF meant that it has better TE-CXL efficacy than that of 6RF@ZIF-8 NP (nanoparticles) due to the larger contact area with the epithelium and the shorter RF release passage. These results suggest that the 6RF@ZIF-8 NF are promising for transepithelial corneal cross-linking, avoiding the need for epithelial debridement.


Asunto(s)
Hibiscus , Fotoquimioterapia , Reactivos de Enlaces Cruzados , Microesferas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Riboflavina/farmacología , Rayos Ultravioleta
9.
Mar Biol ; 169(3): 35, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221378

RESUMEN

The Skogsbergia lerneri is a marine ostracod which possesses a carapace that is both protective and transparent. Since development of this carapace and how it is maintained in the adult is not known, the aim of this investigation was to carry out an in-depth ultrastructural study of the ostracod carapace at different developmental stages. Standard transmission electron microscopy and novel serial block face scanning electron microscopy (SBF-SEM) were undertaken to discern carapace ultrastructure in both two and three dimensions. Analysis revealed a carapace consisting of the same basic layer structure as other myodocopid ostracods, namely an epicuticle, exocuticle, endocuticle and membranous layer, but with a thinner adult carapace of mean thickness of 19.2 ± 1.78 µm, n = 5. The carapace layers, except for instar 1 ostracods, had similar relative proportions throughout development. The endocuticle and membranous layer thickened through advancing developmental stages due to an increase in calcified crystalline polyhedrons and a greater number of chitinous lamellae in the membranous layer. Crystalline polyhedron dimensions were significantly smaller near the boundary with the membranous layer. The borders between the carapace layers were indistinct; SBF-SEM revealed an abundance of epicuticle projections into the exocuticle and apparent gradual merging at the boundary of the exocuticle and the endocuticle. Here, we discuss how the S. lerneri carapace layer structure has evolved to serve a specific mechanical function, allowing surface protection and rigidity. In addition, we suggest that the lack of pigment and graduated layer boundaries contribute to the transparency of the carapace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00227-021-04006-7.

10.
Acta Biomater ; 142: 185-193, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081430

RESUMEN

The mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude. Synchronised biomechanical testing, x-ray scattering and 3D digital image correlation revealed the presence of two dominant mechanisms: collagen fibril elongation due to a largely elastic, spring-like straightening of tropocollagen supramolecular twist, and a more viscous straightening of fibril crimp that gradually increased over successive loading cycles. The distinct mechanical properties of the two mechanisms suggest they have separate roles in vivo. The elastic, spring-like mechanism is fast-acting and likely responds to stresses associated with the cardiac cycle, while the more viscous crimp mechanism will respond to slower processes, such as postural stresses. It is anticipated that these findings will have broad applicability to understanding the normal and pathological functioning of other connective tissues such as skin and blood vessels that exhibit both helical structures and crimp. STATEMENT OF SIGNIFICANCE: The tropocollagen spring mechanism allows collagen fibrils from some tissues to elongate significantly under small loads, and its recent discovery has the potential to change our fundamental understanding of how tissue deforms. This time-resolved study quantifies the contribution of the spring mechanism to the local strain in stretched tissue and compares it to the contribution associated with the straightening of fibril waviness, the widely accepted primary low-load strain mechanism. The spring mechanism contributed more to the local tissue strain than fibril straightening, and was found to be elastic while fibril straightening was more viscous. The results suggest that the viscoelastic behaviour of a biomaterial is controlled, at least in part, by the relative amount of fibril-scale crimp and tropocollagen supramolecular twist.


Asunto(s)
Colágeno , Tropocolágeno , Animales , Fenómenos Biomecánicos , Colágeno/química , Tejido Conectivo , Matriz Extracelular , Humanos , Mamíferos , Viscosidad
11.
Methods Protoc ; 4(3)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449675

RESUMEN

Elastic fibres constitute an important component of the extracellular matrix and currently are the subject of intensive study in order to elucidate their assembly, function and involvement in cell-matrix interactions and disease. However, few studies to date have investigated the 3D architecture of the elastic fibre system in bulk tissue. We describe a protocol for preparation of tissue samples, including primary fixation and backscatter electron contrast-enhancement steps, through dehydration into stable resin-embedded blocks for volume electron microscopy. The use of low molecular weight tannic acid and alcoholic lead staining are critical stages in this procedure. Block preparation by ultramicrotomy and evaporative metal coating prior to microscopical examination are also described. We present images acquired from serial block face scanning electron microscopy of cornea and aorta showing target structures clearly differentiated from cells and other matrix components. The processing method imparts high contrast to fibrillin-containing elastic fibres, thus facilitating their segmentation and rendering into 3D reconstructions by image analysis software from large serial image datasets.

12.
Commun Biol ; 4(1): 608, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021240

RESUMEN

The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.


Asunto(s)
Álcalis/toxicidad , Quemaduras Químicas/complicaciones , Colágeno/farmacología , Córnea/citología , Hidrogeles/administración & dosificación , Inflamación/prevención & control , Fosforilcolina/química , Animales , Materiales Biocompatibles/química , Quemaduras Químicas/patología , Colágeno/química , Humanos , Hidrogeles/química , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Porcinos , Porcinos Enanos
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800395

RESUMEN

In this study we mimic the unique, transparent protective carapace (shell) of myodocopid ostracods, through which their compound eyes see, to demonstrate that the carapace ultrastructure also provides functions of strength and protection for a relatively thin structure. The bulk ultrastructure of the transparent window in the carapace of the relatively large, pelagic cypridinid (Myodocopida) Macrocypridina castanea was mimicked using the thin film deposition of dielectric materials to create a transparent, 15 bi-layer material. This biomimetic material was subjected to the natural forces withstood by the ostracod carapace in situ, including scratching by captured prey and strikes by water-borne particles. The biomimetic material was then tested in terms of its extrinsic (hardness value) and intrinsic (elastic modulus) response to indentation along with its scratch resistance. The performance of the biomimetic material was compared with that of a commonly used, anti-scratch resistant lens and polycarbonate that is typically used in the field of transparent armoury. The biomimetic material showed the best scratch resistant performance, and significantly greater hardness and elastic modulus values. The ability of biomimetic material to revert back to its original form (post loading), along with its scratch resistant qualities, offers potential for biomimetic eye protection coating that could enhance material currently in use.

14.
J R Soc Interface ; 18(175): 20200900, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622146

RESUMEN

This study aims to estimate the reduction in collagen fibril density within the central 6 mm radius of keratoconic corneas through the processing of microstructure and videokeratography data. Collagen fibril distribution maps and topography maps were obtained for seven keratoconic and six healthy corneas, and topographic features were assessed to detect and calculate the area of the cone in each keratoconic eye. The reduction in collagen fibril density within the cone area was estimated with reference to the same region in the characteristic collagen fibril maps of healthy corneas. Together with minimum thickness and mean central corneal refractive power, the cone area was correlated with the reduction in the cone collagen fibrils. For the corneas considered, the mean area of keratoconic cones was 3.30 ± 1.90 mm2. Compared with healthy corneas, fibril density in the cones of keratoconic corneas was lower by as much as 35%, and the mean reduction was 17 ± 10%. A linear approximation was developed to relate the magnitude of reduction to the refractive power, minimum corneal thickness and cone area (R2 = 0.95, p < 0.001). Outside the cone area, there was no significant difference between fibril arrangement in healthy and keratoconic corneas. The presented method can predict the mean fibril density in the keratoconic eye's cone area. The technique can be applied in microstructure-based finite-element models of the eye to regulate its stiffness level and the stiffness distribution within the areas affected by keratoconus.


Asunto(s)
Córnea , Queratocono , Topografía de la Córnea , Humanos
15.
Ther Adv Rare Dis ; 2: 26330040211003573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37181107

RESUMEN

Keratoconus is a condition in which the cornea progressively thins and weakens, leading to severe, irregular astigmatism and a significant reduction in quality of life. Although the precise cause of keratoconus is still not known, biochemical and structural studies indicate that overactive enzymes within the cornea break down the constituent proteins (collagen and proteoglycans) and cause the tissue to weaken. As the disease develops, collagen fibres slip past each other and are redistributed across the cornea, causing it to change shape. In recent years, it was discovered that the photochemical induction of cross-links within the corneal extracellular matrix, through the use of riboflavin and ultraviolet (UVA) light, could increase the strength and enzymatic resistance of the tissue and thereby halt keratoconus progression. Worldwide acceptance and use of riboflavin/UVA corneal cross-linking therapy for halting keratoconus progression has increased rapidly, in accordance with the growing body of evidence supporting its long-term effectiveness. This review focusses on the inception of riboflavin/UVA corneal cross-linking therapy for keratoconus, its clinical effectiveness and the latest scientific advances aimed at reducing patient treatment time, improving patient comfort and increasing patient eligibility for treatment. Plain language summary: Review of current treatments using cross-linking to halt the progress of keratoconus Keratoconus is a disease in which the curved cornea, the transparent window at the front of the eye, weakens, bulges forward into a cone-shape and becomes thinner. This change of curvature means that light is not focussed onto the retina correctly and vision is progressively impaired. Traditionally, the effects of early keratoconus were alleviated by using glasses, specialist contact lenses, rings inserted into the cornea and in severe cases, by performing a corneal transplant. However, it was discovered that by inducing chemical bonds called cross-links within the cornea, the tissue could be strengthened and further thinning and shape changes prevented. The standard cross-linking procedure takes over an hour to perform and involves the removal of the cells at the front of the cornea, followed by the application of Vitamin B2 eye drops and low energy ultraviolet light (UVA) to create new cross-links within the tissue. Clinical trials have shown this standard procedure to be safe and effective at halting keratoconus progression. However, there are many treatment modifications currently under investigation that aim to reduce patient treatment time and increase comfort, such as accelerated cross-linking procedures and protocols that do not require removal of the surface cells. This review describes the different techniques being developed to carry out corneal cross-linking efficiently and painlessly, to halt keratoconus progression and avoid the need for expensive surgery.

16.
In Vitro Cell Dev Biol Anim ; 56(9): 760-772, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33034828

RESUMEN

Primary crustacean cell culture was introduced in the 1960s, but to date limited cell lines have been established. Skogsbergia lerneri is a myodocopid ostracod, which has a body enclosed within a thin, durable, transparent bivalved carapace, through which the eye can see. The epidermal layer lines the inner surface of the carapace and is responsible for carapace synthesis. The purpose of the present study was to develop an in vitro epidermal tissue and cell culture method for S. lerneri. First, an optimal environment for the viability of this epidermal tissue was ascertained, while maintaining its cell proliferative capacity. Next, a microdissection technique to remove the epidermal layer for explant culture was established and finally, a cell dissociation method for epidermal cell culture was determined. Maintenance of sterility, cell viability and proliferation were key throughout these processes. This novel approach for viable S. lerneri epidermal tissue and cell culture augments our understanding of crustacean cell biology and the complex biosynthesis of the ostracod carapace. In addition, these techniques have great potential in the fields of biomaterial manufacture, the military and fisheries, for example, in vitro toxicity testing.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Crustáceos/citología , Células Epidérmicas/citología , Exoesqueleto/citología , Animales , Proliferación Celular , Supervivencia Celular , Crustáceos/ultraestructura , Desinfección , Células Epidérmicas/ultraestructura , Microdisección , Microtomografía por Rayos X
17.
Invest Ophthalmol Vis Sci ; 61(6): 5, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32492106

RESUMEN

Purpose: To investigate the initial events in the development of the human cornea, focusing on cell migration, and extracellular matrix synthesis and organization. To determine whether elastic fibers are present in the extracellular matrix during early human corneal development. Methods: Human corneas were collected from week 7 to week 17 of development. An elastic fiber-enhancing stain, tannic acid-uranyl acetate, was applied to all tissue. Three-dimensional serial block-face scanning electron microscopy combined with conventional transmission electron microscopy was used to analyze the corneal stroma. Results: An acellular collagenous primary stroma with an orthogonal arrangement of fibrils was identified in the central cornea from week 7 of corneal development. At week 7.5, mesenchymal cells migrated toward the central cornea and associated with the acellular collagenous matrix. Novel cell extensions from the endothelium were identified. Elastic fibers were found concentrated in the posterior peripheral corneal stroma from week 12 of corneal development. Conclusions: This study provides novel evidence of an acellular primary stroma in the early development of the embryonic human cornea. Cell extensions exist as part of a communication system and are hypothesized to assist in the migration of the mesenchymal cells and the development of the mature cornea. Elastic fibers identified in early corneal development may play an important role in establishing corneal shape.


Asunto(s)
Córnea/embriología , Sustancia Propia/embriología , Tejido Elástico/embriología , Endotelio Corneal/embriología , Movimiento Celular/fisiología , Córnea/ultraestructura , Sustancia Propia/ultraestructura , Tejido Elástico/ultraestructura , Endotelio Corneal/ultraestructura , Matriz Extracelular/ultraestructura , Edad Gestacional , Humanos , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
18.
Methods Mol Biol ; 2145: 231-247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542611

RESUMEN

X-ray scattering enables the structure of collagen-rich tissues, such as the cornea, to be examined at both the molecular and fibrillar level. The high-intensity X-rays available at synchrotron radiation sources, coupled with minimal sample preparation requirements, facilitates the rapid generation of high-quality X-ray scattering data from corneal tissue at a close-to-physiological state of hydration. Analysis of resulting X-ray scatter patterns allows one to quantify numerous structural parameters relating to the average diameter, lateral arrangement and alignment of collagen fibrils within the cornea, as well as the axial and lateral arrangements of collagen molecules within the fibrils. Here we describe the typical experimental setup and considerations involved in the collection of X-ray scattering data from corneal tissue.


Asunto(s)
Córnea/ultraestructura , Enfermedades de la Córnea/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Difracción de Rayos X/métodos , Colágeno/aislamiento & purificación , Colágeno/ultraestructura , Enfermedades de la Córnea/patología , Humanos , Radiografía , Sincrotrones
19.
Exp Eye Res ; 194: 108001, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173378

RESUMEN

Elastic fibres provide tissues with elasticity and flexibility. In the healthy human cornea, elastic fibres are limited to the posterior region of the peripheral stroma, but their specific functional role remains elusive. Here, we examine the physical and structural characteristics of the cornea during development in the mgΔloxPneo dominant-negative mouse model for Marfan syndrome, in which the physiological extracellular matrix of its elastic-fibre rich tissues is disrupted by the presence of a dysfunctional fibrillin-1 glycoprotein. Optical coherence tomography demonstrated a reduced corneal thickness in the mutant compared to wild type mice from embryonic day 16.5 until adulthood. X-ray scattering and electron microscopy revealed a disruption to both the elastic fibre and collagen fibril ultrastructure in the knockout mice, as well as abnormally low levels of the proteoglycan decorin. It is suggested that these alterations might be a result of increased transforming growth factor beta signalling. To conclude, this study has demonstrated corneal structure and ultrastructure to be altered when fibrillin-1 is disrupted and has provided insights into the role of fibrillin-1 in developing a functional cornea.


Asunto(s)
Córnea/anomalías , Matriz Extracelular/metabolismo , Síndrome de Marfan/patología , Animales , Córnea/metabolismo , Córnea/ultraestructura , Modelos Animales de Enfermedad , Elasticidad , Femenino , Fibrilina-1/metabolismo , Síndrome de Marfan/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Tomografía de Coherencia Óptica/métodos
20.
Sci Rep ; 9(1): 11277, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375736

RESUMEN

As the outer lens in the eye, the cornea needs to be strong and transparent. These properties are governed by the arrangement of the constituent collagen fibrils, but the mechanisms of how this develops in mammals is unknown. Using novel 3-dimensional scanning and conventional transmission electron microscopy, we investigated the developing mouse cornea, focusing on the invading cells, the extracellular matrix and the collagen types deposited at different stages. Unlike the well-studied chick, the mouse cornea had no acellular primary stroma. Collagen fibrils initially deposited at E13 from the presumptive corneal stromal cells, become organised into fibril bundles orthogonally arranged between cells. Extensive cell projections branched to adjacent stromal cells and interacted with the basal lamina and collagen fibrils. Types I, II and V collagen were expressed from E12 posterior to the surface ectoderm, and became widespread from E14. Type IX collagen localised to the corneal epithelium at E14. Type VII collagen, the main constituent of anchoring filaments, was localised posterior to the basal lamina. We conclude that the cells that develop the mouse cornea do not require a primary stroma for cell migration. The cells have an elaborate communication system which we hypothesise helps cells to align collagen fibrils.


Asunto(s)
Colágeno/ultraestructura , Córnea/ultraestructura , Matriz Extracelular/ultraestructura , Imagenología Tridimensional , Animales , Movimiento Celular/genética , Colágeno/metabolismo , Córnea/crecimiento & desarrollo , Sustancia Propia/crecimiento & desarrollo , Sustancia Propia/ultraestructura , Desarrollo Embrionario/genética , Matriz Extracelular/genética , Ratones , Microscopía Electrónica de Transmisión , Células del Estroma/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA