RESUMEN
Atypical teratoid/rhabdoid tumors (ATRTs) are highly malignant embryonal tumors of the central nervous system with a dismal prognosis. Using a newly developed and validated patient-derived ATRT culture and xenograft model, alongside a panel of primary ATRT models, we found that ATRTs are selectively sensitive to the nucleoside analog gemcitabine. Gene expression and protein analyses indicate that gemcitabine treatment causes the degradation of sirtuin 1 (SIRT1), resulting in cell death through activation of nuclear factor κB (NF-κB) and p53. Furthermore, we discovered that gemcitabine-induced loss of SIRT1 results in a nucleus-to-cytoplasm translocation of the sonic hedgehog (SHH) signaling activator GLI2, explaining the observed additional gemcitabine sensitivity in SHH-subtype ATRT. Treatment of ATRT xenograft-bearing mice with gemcitabine resulted in a >30% increase in median survival and yielded long-term survivors in two independent patient-derived xenograft models. These findings demonstrate that ATRTs are highly sensitive to gemcitabine treatment and may form part of a future multimodal treatment strategy for ATRTs.
Asunto(s)
Desoxicitidina , Gemcitabina , Tumor Rabdoide , Sirtuina 1 , Teratoma , Proteína p53 Supresora de Tumor , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Animales , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Teratoma/patología , Teratoma/tratamiento farmacológico , Teratoma/metabolismo , Teratoma/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , FN-kappa B/metabolismoRESUMEN
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
RESUMEN
Background: Diffuse midline gliomas (DMG) are highly malignant incurable pediatric brain tumors. A lack of effective treatment options highlights the need to investigate novel therapeutic strategies. This includes the use of immunotherapy, which has shown promise in other hard-to-treat tumors. To facilitate preclinical immunotherapeutic research, immunocompetent mouse models that accurately reflect the unique genetic, anatomical, and histological features of DMG patients are warranted. Methods: We established cell cultures from primary DMG mouse models (C57BL/6) that were generated by brainstem targeted intra-uterine electroporation (IUE). We subsequently created allograft DMG mouse models by orthotopically implanting these tumor cells into syngeneic mice. Immunohistochemistry and -fluorescence, mass cytometry, and cell-viability assays were then used to verify that these murine tumors recapitulated human DMG. Results: We generated three genetically distinct allograft models representing histone 3 wildtype (H3WT) and K27M-mutant DMG (H3.3K27M and H3.1K27M). These allograft models recapitulated the histopathologic phenotype of their human counterparts, including their diffuse infiltrative growth and expression of DMG-associated antigens. These murine pontine tumors also exhibited an immune microenvironment similar to human DMG, characterized by considerable myeloid cell infiltration and a paucity of T-lymphocytes and NK cells. Finally, we show that these murine DMG cells display similar sensitivity to histone deacetylase (HDAC) inhibition as patient-derived DMG cells. Conclusions: We created and validated an accessible method to generate immunocompetent allograft models reflecting different subtypes of DMG. These models adequately recapitulated the histopathology, immune microenvironment, and therapeutic response of human DMG, providing useful tools for future preclinical studies.
RESUMEN
Diffuse midline gliomas (DMG) are highly malignant incurable pediatric brain tumors. In this study, we show that Aurora kinase A (AURKA) is overexpressed in DMG and can be used as a therapeutic target. Additionally, AURKA inhibition combined with CRISPR/Cas9 screening in DMG cells, revealed polo-like kinase 1 (PLK1) as a synergistic target with AURKA. Using a panel of patient-derived DMG culture models, we demonstrate that treatment with volasertib, a clinically relevant and selective PLK1 inhibitor, synergizes with different AURKA inhibitors, supporting the CRISPR screen results. Mechanistically, our results show that combined loss of PLK1 and AURKA causes a G2/M cell cycle arrest which blocks vital parts of DNA-damage repair and induces apoptosis, solely in DMG cells. Altogether, our findings highlight the importance of AURKA and PLK1 for DMG propagation and demonstrate the potential of concurrently targeting these proteins as a therapeutic strategy for these devastating pediatric brain tumors.
RESUMEN
The blood-brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.
Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Glioma/patología , Acoplamiento Neurovascular , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Barrera Hematoencefálica/patología , Niño , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Clasificación del Tumor/métodos , Acoplamiento Neurovascular/fisiologíaRESUMEN
BACKGROUND AND PURPOSE: Effective combination treatments with fractionated radiotherapy rely on a proper understanding of the dynamic responses that occur during treatment. We explored the effect of clinical fractionated radiotherapy on the development and timing of radioresistance in tumor cells. METHODS AND MATERIALS: Different colon (HT29/HCT116/COLO320/SW480/RKO) and high-grade astrocytoma (D384/U-251MG) cancer cell lines were treated for 6 weeks with daily fractions of 2 Gy, 5 days per week. Clonogenic survival was determined throughout the treatment period. In addition, the radiosensitivity of irradiated and non-irradiated was compared. Finally, the effect of different dose fractions on the development of radioresistance was determined. RESULTS: All cell lines developed radioresistance within 2-3 weeks during fractionated radiotherapy. This was characterized by the occurrence of a steady state phase of clonogenic survival. In U-251MG cells this was accompanied by increased cell senescence and stemness. After recovering from six weeks of treatment, the radiosensitivity of fractionally irradiated and non-irradiated cells was similar. Including transient radioresistance, described as (α/ß)-(d+1), as a factor in the classic LQ model resulted in a perfect fit with the experimental data observed during fractionated radiotherapy. This was confirmed when different dose fractions were applied. CONCLUSIONS: Fractionated irradiation of cancer cells in vitro following clinical radiation schedules induces a reversible radioresistance response. This adaptive response can be included in the LQ model as a function of the dose fraction and the alpha/beta-ratio of a given cell line. These findings warrant further investigation of the mechanisms and clinical relevance of adaptive radioresistance.
Asunto(s)
Neoplasias , Tolerancia a Radiación , Supervivencia Celular , HumanosRESUMEN
PURPOSE: Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype. EXPERIMENTAL DESIGN: We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors. Patient-derived neurospheres, xenografts, and allografts were used to determine the therapeutic potential of combined AXL/HDAC inhibition for the treatment of DIPG. RESULTS: We identified AXL as a therapeutic target and regulator of the mesenchymal transition in DIPG. Combined AXL and HDAC inhibition had a synergistic and selective antitumor effect on H3K27M DIPG cells. Treatment of DIPG cells with the AXL inhibitor BGB324 and the HDAC inhibitor panobinostat resulted in a decreased expression of mesenchymal and stem cell genes. Moreover, this combination treatment decreased expression of DNA damage repair genes in DIPG cells, strongly sensitizing them to radiation. Pharmacokinetic studies showed that BGB324, like panobinostat, crosses the blood-brain barrier. Consequently, treatment of patient-derived DIPG xenograft and murine DIPG allograft-bearing mice with BGB324 and panobinostat resulted in a synergistic antitumor effect and prolonged survival. CONCLUSIONS: Combined inhibition of AXL and HDACs in DIPG cells results in a synergistic antitumor effect by reversing their mesenchymal, stem cell-like, therapy-resistant phenotype. As such, this treatment combination may serve as part of a future multimodal therapeutic strategy for DIPG.
Asunto(s)
Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Benzocicloheptenos/farmacología , Biomarcadores de Tumor , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Línea Celular Tumoral , Terapia Combinada , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/etiología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Inmunohistoquímica , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor AxlRESUMEN
BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4. Additionally, activation of the MAPK signaling axis and preclinical antitumor efficacy of its inhibition have been described in AT/RT. METHODS: We established and validated a patient-derived neurosphere culture and xenograft model of sonic hedgehog (SHH) subtype AT/RT, at diagnosis and relapse from the same patient. We set out to study the vascular phenotype of these tumors to evaluate the integrity of the blood-brain barrier (BBB) in AT/RT. We also used the model to study combined mitogen-activated protein kinase kinase (MEK) and maternal embryonic leucine zipper kinase (MELK) inhibition as a therapeutic strategy for AT/RT. RESULTS: We found MELK to be highly overexpressed in both patient samples of AT/RT and our primary cultures and xenografts. We identified a potent antitumor efficacy of the MELK inhibitor OTSSP167, as well as strong synergy with the MEK inhibitor trametinib, against primary AT/RT neurospheres. Additionally, vascular phenotyping of AT/RT patient material and xenografts revealed significant BBB aberrancies in these tumors. Finally, we show in vivo efficacy of the non-BBB penetrable drugs OTSSP167 and trametinib in AT/RT xenografts, demonstrating the therapeutic implications of the observed BBB deficiencies and validating MEK/MELK inhibition as a potential treatment. CONCLUSION: Altogether, we developed a combination treatment strategy for AT/RT based on MEK/MELK inhibition and identify therapeutically exploitable BBB deficiencies in these tumors.
Asunto(s)
Barrera Hematoencefálica/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Naftiridinas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridonas/farmacología , Pirimidinonas/farmacología , Tumor Rabdoide/enzimología , Teratoma/enzimología , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Tumor Rabdoide/patología , Esferoides Celulares/efectos de los fármacos , Teratoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death during childhood. Due to their diffuse growth characteristics, chemoresistance and location behind the blood-brain barrier (BBB), the prognosis of pHGG has barely improved in the past decades. As such, there is a dire need for new therapies that circumvent those difficulties. Since aberrant expression of DNA damage-response associated Fanconi anemia proteins play a central role in the onset and therapy resistance of many cancers, we here investigated if FANCD2 depletion could sensitize pHGG to additional DNA damage. METHODS: We determined the capacity of celastrol, a BBB-penetrable compound that degrades FANCD2, to sensitize glioma cells to the archetypical DNA-crosslinking agent carboplatin in vitro in seven patient-derived pHGG models. In addition, we tested this drug combination in vivo in a patient-derived orthotopic pHGG xenograft model. Underlying mechanisms to drug response were investigated using mRNA expression profiling, western blotting, immunofluorescence, FANCD2 knockdown and DNA fiber assays. FINDINGS: FANCD2 is overexpressed in HGGs and depletion of FANCD2 by celastrol synergises with carboplatin to induce cytotoxicity. Combination therapy prolongs survival of pHGG-bearing mice over monotherapy and control groups in vivo (P<0.05). In addition, our results suggest that celastrol treatment stalls ongoing replication forks, causing sensitivity to DNA-crosslinking in FANCD2-dependent glioma cells. INTERPRETATION: Our results show that depletion of FANCD2 acts as a chemo-sensitizing strategy in pHGG. Combination therapy using celastrol and carboplatin might serve as a clinically relevant strategy for the treatment of pHGG. FUNDING: This study was funded by a grant from the Children Cancer-Free Foundation (KIKA, project 210). The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Asunto(s)
Carboplatino/farmacología , Reactivos de Enlaces Cruzados/farmacología , Resistencia a Antineoplásicos/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Glioma/genética , Glioma/metabolismo , Triterpenos/farmacología , Adolescente , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Niño , Preescolar , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Glioma/patología , Humanos , Masculino , Ratones , Clasificación del Tumor , Triterpenos Pentacíclicos , Proteolisis/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."
RESUMEN
PURPOSE: Diffuse intrinsic pontine glioma is the most aggressive form of high grade glioma in children with no effective therapies. There have been no improvements in survival in part due poor understanding of underlying biology, and lack of representative in vitro and in vivo models. Recently, it has been found feasible to use both biopsy and autopsy tumors to generate cultures and xenograft models. METHODS: To further model development, we evaluated the collective international experience from 8 collaborating centers to develop DIPG pre-clinical models from patient-derived autopsies and biopsies. Univariate and multivariate analysis was performed to determine key factors associated with the success of in vitro and in vivo PDX development. RESULTS: In vitro cultures were successfully established from 57% of samples (84.2% of biopsies and 38.2% of autopsies). Samples transferred in DMEM media were more likely to establish successful culture than those transported in Hibernate A. In vitro cultures were more successful from biopsies (84.2%) compared with autopsies (38.2%) and as monolayer on laminin-coated plates than as neurospheres. Primary cultures successfully established from autopsy samples were more likely to engraft in animal models than cultures established from biopsies (86.7% vs. 47.4%). Collectively, tumor engraftment was more successful when DIPG samples were directly implanted in mice (68%), rather than after culturing (40.7%). CONCLUSION: This multi-center study provides valuable information on the success rate of establishing patient-derived pre-clinical models of DIPG. The results can lead to further optimization of DIPG model development and ultimately assist in the investigation of new therapies for this aggressive pediatric brain tumor.
Asunto(s)
Neoplasias del Tronco Encefálico/fisiopatología , Neoplasias del Tronco Encefálico/terapia , Glioma/fisiopatología , Glioma/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Neoplasias del Tronco Encefálico/genética , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Glioma/genética , Histonas/genética , Humanos , Ratones , Mutación , Estudios RetrospectivosRESUMEN
Purpose: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG.Experimental Design: We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in vitro in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells. In addition, we determined the blood-brain barrier (BBB) penetration of OTSSP167 and evaluated its translational potential by treating mice bearing patient-derived DIPG xenografts.Results: This study shows that MELK is highly expressed in DIPG cells, both in patient samples and in relevant in vitro and in vivo models, and that treatment with OTSSP167 strongly decreases proliferation of patient-derived DIPG cultures. Inhibition of MELK in DIPG cells functions through reducing inhibitory phosphorylation of PPARγ, resulting in an increase in nuclear translocation and consequent transcriptional activity. Brain pharmacokinetic analyses show that OTSSP167 is a strong substrate for both MDR1 and BCRP, limiting its BBB penetration. Nonetheless, treatment of Mdr1a/b;Bcrp1 knockout mice carrying patient-derived DIPG xenografts with OTSSP167 decreased tumor growth, induced remissions, and resulted in improved survival.Conclusions: We show a strong preclinical effect of the kinase inhibitor OTSSP167 in the treatment of DIPG and identify the MELK-PPARγ signaling axis as a putative therapeutic target in this disease. Clin Cancer Res; 24(22); 5645-57. ©2018 AACR.
Asunto(s)
Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Glioma/metabolismo , Glioma/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Expresión Génica , Glioma/tratamiento farmacológico , Humanos , Ratones Transgénicos , Estadificación de Neoplasias , PPAR gamma/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Pediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are rare, but rapidly fatal malignancies of the central nervous system (CNS), and the leading cause of cancer-related death in children. Besides the scarcity of available biological material for research, the study of these diseases has been hampered by methodological problems. One of the major obstacles is the difficulty with which these cells can be genetically modified by conventional laboratory methods, such as lentiviral transduction. As a result, only very few successful stable modifications have been reported. As pHGG and DIPG cells are most often cultured as neurospheres, and therefore retain stem cell-like characteristics, we hypothesized that this culture method is also responsible for their resistance to transduction. We therefore developed a protocol in which pHGG and DIPG cells are temporarily forced to form an adherent monolayer by exposure to serum, to create a window-of-opportunity for lentiviral transduction. We here demonstrate that this protocol reliably and reproducibly introduces stable genetic modifications in primary DIPG and pHGG cells. â¢Short-term serum exposure enables lentiviral transduction of primary pediatric glioma neurospheres.
RESUMEN
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal types of cancer in children. In recent years, it has become evident that these tumors are driven by epigenetic events, mainly mutations involving genes encoding Histone 3, setting them apart from their adult counterparts. These tumors are exceptionally resistant to chemotherapy and respond only temporarily to radiotherapy. Moreover, their delicate location and diffuse growth pattern make complete surgical resection impossible. In many other forms of cancer, chemo- and radioresistance, in combination with a diffuse, invasive phenotype, are associated with a transcriptional program termed the epithelial-to-mesenchymal transition (EMT). Activation of this program allows cancer cells to survive individually, invade surrounding tissues and metastasize. It also enables them to survive exposure to cytotoxic therapy, including chemotherapeutic drugs and radiation. We here suggest that EMT plays an important, yet poorly understood role in the biology and therapy resistance of pHGG and DIPG. This review summarizes the current knowledge on the major signal transduction pathways and transcription factors involved in the epithelial-to-mesenchymal transition in cancer in general and in pediatric HGG and DIPG in particular. Despite the fact that the mesenchymal transition has not yet been specifically studied in pHGG and DIPG, activation of pathways and high levels of transcription factors involved in EMT have been described. We conclude that the mesenchymal transition is likely to be an important element of the biology of pHGG and DIPG and warrants further investigation for the development of novel therapeutics.
Asunto(s)
Neoplasias del Tronco Encefálico/patología , Transición Epitelial-Mesenquimal/fisiología , Glioma/patología , Transducción de Señal/fisiología , Adulto , Neoplasias del Tronco Encefálico/metabolismo , Niño , Glioma/metabolismo , Humanos , Clasificación del TumorRESUMEN
Inadequate tumor uptake of the vascular endothelial growth factor antibody bevacizumab could explain lack of effect in diffuse intrinsic pontine glioma. Methods: By combining data from a PET imaging study using 89Zr-labeled bevacizumab and an autopsy study, a 1-on-1 analysis of multiregional in vivo and ex vivo 89Zr-bevacizumab uptake, tumor histology, and vascular morphology in a diffuse intrinsic pontine glioma patient was performed. Results: In vivo 89Zr-bevacizumab measurements showed heterogeneity between lesions. Additional ex vivo measurements and immunohistochemistry of cervicomedullary metastasis samples showed uptake to be highest in the area with marked microvascular proliferation. In the primary pontine tumor, all samples showed similar vascular morphology. Other histologic features were similar between the samples studied. Conclusion: In vivo 89Zr-bevacizumab PET serves to identify heterogeneous uptake between tumor lesions, whereas subcentimeter intralesional heterogeneity could be identified only by ex vivo measurements. 89Zr-bevacizumab uptake is enhanced by vascular proliferation, although our results suggest it is not the only determinant of intralesional uptake heterogeneity.
Asunto(s)
Bevacizumab/metabolismo , Bevacizumab/uso terapéutico , Neoplasias del Tronco Encefálico/irrigación sanguínea , Neoplasias del Tronco Encefálico/metabolismo , Microvasos/diagnóstico por imagen , Microvasos/patología , Tomografía de Emisión de Positrones , Transporte Biológico , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Niño , Femenino , Humanos , Radioisótopos/uso terapéutico , Circonio/uso terapéuticoRESUMEN
Diffuse intrinsic pontine glioma (DIPG) is an aggressive type of brainstem cancer occurring mainly in children, for which there currently is no effective therapy. Current efforts to develop novel therapeutics for this tumor make use of primary cultures of DIPG cells, maintained either as adherent monolayer in serum containing medium, or as neurospheres in serum-free medium. In this manuscript, we demonstrate that the response of DIPG cells to targeted therapies in vitro is mainly determined by the culture conditions. We show that particular culture conditions induce the activation of different receptor tyrosine kinases and signal transduction pathways, as well as major changes in gene expression profiles of DIPG cells in culture. These differences correlate strongly with the observed discrepancies in response to targeted therapies of DIPG cells cultured as either adherent monolayers or neurospheres. With this research, we provide an argument for the concurrent use of both culture conditions to avoid false positive and false negative results due to the chosen method.
Asunto(s)
Neoplasias del Tronco Encefálico/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos de Selección de Medicamentos Antitumorales/normas , Glioma/patología , Terapia Molecular Dirigida , Cultivo Primario de Células/métodos , Adolescente , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Humanos , Masculino , Proteínas Tirosina Quinasas Receptoras/farmacología , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Resultado del TratamientoRESUMEN
OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic window for treating orthotopic brainstem tumors in mice. For tumors in the thalamus, therapeutic concentrations to slow down tumor growth could be reached. These data suggest that anatomical location determines the severity of toxicity after local delivery of therapeutic agents and that caution should be used when translating data from supratentorial CED studies to treat infratentorial tumors.
Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Doxorrubicina/análogos & derivados , Glioma/tratamiento farmacológico , Puente , Tálamo , Animales , Antibióticos Antineoplásicos/toxicidad , Neoplasias Encefálicas/patología , Neoplasias del Tronco Encefálico/patología , Células Cultivadas , Niño , Convección , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/toxicidad , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Femenino , Glioma/patología , Humanos , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Polietilenglicoles/administración & dosificación , Polietilenglicoles/toxicidad , Puente/efectos de los fármacos , Puente/patología , Tálamo/efectos de los fármacos , Tálamo/patologíaRESUMEN
Persistence of leukemic stem cells (LSC) after chemotherapy is thought to be responsible for relapse and prevents the curative treatment of acute myeloid leukemia (AML) patients. LSC and normal hematopoietic stem cells (HSC) share many characteristics and co-exist in the bone marrow of AML patients. For the development of successful LSC-targeted therapy, enabling eradication of LSC while sparing HSC, the identification of differences between LSC and HSC residing within the AML bone marrow is crucial. For identification of these LSC targets, as well as for AML LSC characterization, discrimination between LSC and HSC within the AML bone marrow is imperative. Here we show that normal CD34+CD38- HSC present in AML bone marrow, identified by their lack of aberrant immunophenotypic and molecular marker expression and low scatter properties, are a distinct sub-population of cells with high ALDH activity (ALDH(bright)). The ALDH(bright) compartment contains, besides normal HSC, more differentiated, normal CD34+CD38+ progenitors. Furthermore, we show that in CD34-negative AML, containing solely normal CD34+ cells, LSC are CD34- and ALDH(low). In CD34-positive AML, LSC are also ALDH(low) but can be either CD34+ or CD34-. In conclusion, although malignant AML blasts have varying ALDH activity, a common feature of all AML cases is that LSC have lower ALDH activity than the CD34+CD38- HSC that co-exist with these LSC in the AML bone marrow. Our findings form the basis for combined functionally and immunophenotypically based identification and purification of LSC and HSC within the AML bone marrow, aiming at development of highly specific anti-LSC therapy.