Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reprod Biol ; 23(1): 100732, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36669377

RESUMEN

The negative impact of zearalenone (ZEN; potent estrogenic mycotoxin) exposure on buffalo embryo production has not yet been determined. In the current study, buffalo sperm and oocytes were exposed to ZEN at different concentrations during maturation. Sperms (with and without ZEN exposure) were incubated for 2 h and evaluated for motility, viability, acrosome integrity, normality, and ultrastructure. Matured oocytes exposed to ZEN were stained to determine their nuclear maturation. Further, their developmental ability was evaluated after in vitro fertilization. Our results showed the toxic effects of ZEN at high concentrations (2000 ng/mL) on different buffalo sperm parameters. The number of acrosome-intact sperm was reduced at 0 h after exposure to a concentration of ≥ 100 ng/mL. Furthermore, the maturation rate of buffalo oocytes (telophase I + metaphase II) was significantly decreased in ZEN-treated oocytes with a higher degeneration rate. Oocytes matured in 1000 ng/mL ZEN and subsequently exhibited considerable reduction in cleavage rate and blastocyst formation compared with control oocytes (2.6% vs. 13.1%). Moreover, the morula rate was decreased (p < 0.001) in ZEN-treated oocytes at concentrations of ≥ 10 ng/mL. Overall, the adverse effects of in vitro ZEN exposure on buffalo sperm parameters and oocyte meiotic progression with a notable reduction in cleavage, morula, and blastocyst rates were defined by these results. Altogether, buffaloes should be considered sensitive to ZEN exposure with respect to their reproductive function.


Asunto(s)
Búfalos , Zearalenona , Embarazo , Animales , Femenino , Masculino , Zearalenona/análisis , Zearalenona/farmacología , Semen , Desarrollo Embrionario , Oocitos , Fertilización In Vitro , Espermatozoides , Técnicas de Maduración In Vitro de los Oocitos/métodos , Blastocisto
2.
Sci Rep ; 12(1): 7869, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551262

RESUMEN

This study determined the effects of scrotal insulation on testicular functions in bucks and evaluated the impact of exogenous gonadotropin-releasing hormone (GnRH) administration before scrotal insulation on sperm production and testicular vascular dynamics. Twelve bucks were randomly divided into three groups: scrotal-insulated animals without GnRH treatment (INS), scrotal-insulated animals treated previously with GnRH (GnRH + INS), and animals without insulation as controls (CON). Doppler ultrasonography was used to evaluate testicular vascular changes, and semen samples were collected to assess seminal parameters. Testicular samples were collected from slaughtered bucks at the end of the experiment for histological investigations and immunohistochemical analysis for caspase 3 (apoptotic marker), and a vascular endothelial growth factor (VEGF; hypoxic marker) evaluation. Sperm motility drastically decreased (33%) in the INS group on day 8 compared with those in the GnRH + INS and CON groups (58% and 85%, respectively). Testicular blood flow significantly decreased for 3 and 2 weeks in the INS and GnRH + INS groups, respectively. The pulsatility index (PI) reached pretreatment values at 5 and 4 weeks after insulation in the INS and GnRH + INS groups, respectively. The resistance index (RI) values increased in both insulated groups for the first 2 weeks and decreased to control values 4 weeks after insulation. However, the maximum velocity (VP) started to increase reaching pretreatment values by the 5th and 3rd weeks after insulation in the INS and GnRH + INS groups, respectively. Histological investigations showed a marked reduction in lipid inclusions in Sertoli cells in the GnRH + INS group compared with those in the INS group. The distributions of both caspase 3 and VEGF decreased in the GnRH + INS group compared with those in the INS group. This study showed that the administration of a single dose of GnRH delayed the negative effects of scrotal insulation on different seminal traits and revealed the pivotal role of GnRH in compensating testicular insulation in bucks.


Asunto(s)
Análisis de Semen , Motilidad Espermática , Animales , Caspasa 3/farmacología , Hormona Liberadora de Gonadotropina/farmacología , Masculino , Testículo , Testosterona/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...