Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679594

RESUMEN

A Phaseolus vulgaris L. leaf showing necrotic spots was collected in an experimental bean field in central Slovenia in August 2021. The field contained diverse common bean lines sourced from genebank collections, with each line represented by 10 plants. While symptomatic leaves were seen across various lines, the reported species derived exclusively from a Huasca Huallaga Colorado plant (single-seed descent, USDA accession PI153714, doi: 10.18730/H7P9N), a Peruvian landrace. After incubating the leaf for 2 d at ambient temperature in a moist chamber, setose acervuli developed producing curved, distally tapering and proximately truncated conidia. Single-spore cultures developed equally-shaped conidia measuring 14.5-21.5 (avg. 18.5) × 3-4 (avg. 3.5) µm (n=60) on corn meal agar when mounted in lactic acid. Obtained morphological characters and sequences of the partial actin (GenBank accession, OR208162), beta-tubulin (OR208164), and histone 3 (OR208165) gene identified the isolate as Colletotrichum incanum H.-C. Yang, J.S. Haudenshield & G.L. Hartman. Sequences were identical to those from CBS 133485 (= NRRL 62592, IL6A), ex-type strain of C. incanum (KC110823, KC110814, and KC110796). Partial sequences of the chitin synthase (CHS) gene (OR208163), not available for the ex-type strain, was identical to sequences of other C. incanum strains reported from China (KP145539, ON189040, and OQ613679-OQ613686) or differed in two nucleotide positions (OL471268 and OL471269). The strain from Slovenia was deposited in the CBS biobanks of the Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands) as CBS 150848. Pathogenicity of the strain was tested by spraying ca. 3×105 conidia as a watery spore suspension onto each leaf of 6 greenhouse-grown and 3 wk-old common bean plantlets (cv. KIS Amand). Nonsterile commercial substrate (Potgrond H, AGRO-FertiCrop) was used and natural light conditions at ambient temperatures (18-23°C) applied. Sterile water was sprayed on 6, equally grown negative control plants. Treated plants showed small brownish spots after 3 wks similar to those described by Yang et al. (2014) on soybean. Setose acervuli formed within 5 days after detached leaves were incubated in moist chambers. No acervuli formed on negative control plants. Conidia re-isolated from these acervuli and obtained cultures were morphologically identical to originally obtained conidia and cultures and those used for performing the pathogenicity test. Anthracnose is an important disease of common bean attributed to various races of C. lindemuthianum (Sacc. & Magnus) Briosi & Cavara (Nunes et al. 2021). Reporting an additional agent potentially able to cause diseases in common bean and so far not known to occur in Europe is of high relevance as the various genetic bean lines used in Europe may show alternative susceptibility levels to it. However, symptoms caused by C. incanum seem to be less severe as those caused by C. lindemuthianum and the species belongs to the C. spaethianum species complex, whose members have so far not been considered as pathogens of economic importance (Talhinhas & Baroncelli 2021). Yang et al. (2014) based C. incanum on isolates from soybean petioles (USA) and associated it with common bean by re-identifying strain ATCC 64682 obtained by Tu (1990) in Canada. Database queries revealed that it was encountered also on sugar beet (USA; Hanson et al. 2023) and on various crop hosts in China (e.g., chili; Diao et al. 2017), but not in Europe. The work was funded by the Ministry of Agriculture, Forestry and Food and conducted as part of research programs P4-0072 and P4-0431, financed by the Slovenian Research and Innovation Agency ARIS, and the Horizon 2020 project INCREASE funded by the European Union.

2.
Plants (Basel) ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674521

RESUMEN

The common bean is an important legume valued for its protein-rich seeds and its ability to fix nitrogen, making it a key element of crop rotation. In conventional agriculture, the emphasis is on uniformity and genetic purity to optimize crop performance and maximize yields. This is due to both the legal obligations to register varieties and the challenges of implementing breeding programs to create genetically diverse varieties. This paper focuses on the factors that influence the occurrence of heterogeneous common bean populations. The main factors contributing to this diversity have been described, including local adaptations, variable weather conditions, different pollinator species, and intricate interactions between genes controlling seed coat colour. We also discuss the benefits of intercropping common beans for organic farming systems, highlighting the improvement in resistance to diseases, and adverse environmental conditions. This paper contributes to a better understanding of common bean seed heterogeneity and the legal obligation to use heterogeneous populations.

3.
Genome Biol ; 25(1): 61, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414075

RESUMEN

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Asunto(s)
Fagopyrum , Domesticación , Fagopyrum/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Filogenia
4.
Plants (Basel) ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276770

RESUMEN

French beans are tender, immature, edible pods that are harvested early in the plant's growth cycle and are usually eaten cooked. The growth habits of French beans were studied for the first time in a Citizen Science experiment, and 19 pod samples were collected for further nutritional analysis. Various macronutrients (e.g., protein, ash, fat, carbohydrates, amino acids) and multi-element profiles were determined. A survey of their growing habits revealed that beans are usually planted once or twice a year in May and June at a length of 5-10 m, with a predominance of dwarf beans cultivation over climbing varieties, and pest resistance and stringless pods are the most important characteristics when deciding on a bean. Homogenised freeze-dried pod samples contained 16.1-23.1% protein, 4.5-8.2% ash, 0.1-1.1% fat, and 62.0-70.6% carbohydrates and had a caloric value of 337-363 kcal/100 g. Of the 17 free amino acids identified, 8 were essential (histidine, threonine, methionine, valine, lysine, isoleucine, leucine, phenylalanine) and 9 were non-essential (cysteine, aspartic acid, serine, glutamic acid, glycine, arginine, alanine, proline, tyrosine); meanwhile, of the 12 elements, 5 were macroelements and 7 were microelements. The predominant free amino acids were aspartic acid, glutamic acid, and serine. In the multiple comparisons (Box and Whisker plot), the parameters caloric value and iron showed the strongest response. A very strong positive significant Pearson correlation (≥0.95) was found for five pairs of variables within the free amino acids. Comparison of the nutrient data obtained in the pods showed near-perfect or high complementarity (85.2-103.4%) with the food composition databases for half of the parameters, suggesting that the home-grown French beans from the Citizen Science experiment are a highly nutritious vegetable.

5.
Plants (Basel) ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765484

RESUMEN

Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivated buckwheat species Fagopyrum esculentum and Fagopyrum tataricum (190 and 51 accessions, respectively) using 37 agro-morphological traits and 24 SSR markers. A wide range of variation was observed in both species for most of the traits analysed. The two species differed significantly in most traits, with traits related to seeds and flowering contributing most to differentiation. The accessions of each species were divided into three major phenoclusters with no clear geographic clustering. At the molecular level, the polymorphic SSR markers were highly informative, with an average polymorphic information content (PIC) of over 0.65 in both species. Genetic diversity, as determined by Nei's expected heterozygosity (He), was high (He = 0.77 and He = 0.66, respectively) and differed significantly between species (p = 0.03) but was homogeneously distributed between regions, confirming the lack of genetic structure as determined by clustering approaches. The weak genetic structure revealed by the phenotypic and SSR data and the low fixation indices in both species suggested frequent seed exchange and extensive cultivation and selection. In addition, 93 and 140 significant (p < 0.05) marker-trait associations (MTAs) were identified in both species using a general linear model and a mixed linear model, most of which explained >20% of the phenotypic variation in associated traits. Core collections of 23 and 13 phenotypically and genetically diverse accessions, respectively, were developed for F. esculentum and F. tataricum. Overall, the data analysed provided deep insights into the agro-morphological and genetic diversity and genetic relationships among F. esculentum and F. tataricum accessions and pointed to future directions for genomics-based breeding programs and germplasm management.

6.
Mol Plant ; 16(9): 1427-1444, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37649255

RESUMEN

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Asunto(s)
Productos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenómica , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fertilidad
7.
Foods ; 12(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444190

RESUMEN

(Pseudo)cereal grains have been the basis of human nutrition for thousands of years. The various types of cereals are usually harvested by grain harvesters and must be technologically processed in different ways before consumption. In addition to genotype and growing conditions, the compositional characteristics of the (pseudo)cereal grains are highly dependent on the processes used. In the present study, the effects of hulling, cleaning and brushing/polishing wheat, spelt, oat, barley, common and Tartary buckwheat grains and their fractions on physical parameters (thousand kernel weight, kernel width, fractional yield) and nutritional characteristics (protein, fat, ß-glucan, macro- and microelements) were investigated. Grain samples contained 22.7-148.5 mg/g protein, 4.5-69.6 mg/g fat and 0.5-54.4 mg/g ß-glucan. The content of macro- (K, Mg, P, S, Ca) and microelements (Mn, Fe, Zn, Na, Cu, Cr, Mo) varied considerably among the studied (pseudo)cereals and their grain fractions. Analysis of variance showed that species and fractions significantly influenced most of the analyzed characteristics. However, the composition of the edible fractions was not significantly dependent on the brushing/polishing process.

8.
Foods ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900571

RESUMEN

Barley, oats, or spelt consumed as minimally processed whole grains provide several health benefits, especially when grown under organic field management conditions. Therefore, the effects of organic and conventional farming on the compositional traits (protein, fibre, fat, and ash) of barley, oat, and spelt grains and groats were compared using three winter barley varieties ('Anemone', 'BC Favorit', and 'Sandra'), two spring oat varieties ('Max' and 'Noni'), and three spelt varieties ('Ebners Rotkorn', 'Murska bela', and 'Ostro'). Groats were produced from harvested grains by a combination of threshing, winnowing, and brushing/polishing. Multitrait analysis showed significant differences between species, field management practices, and fractions, with clear compositional differences between organic and conventional spelt. Barley and oat groats had a higher thousand kernel weight (TKW) and ß-glucan, but lower crude fibre, fat, and ash contents than the grains. The composition of the grains of the different species differed significantly for more traits (TKW, fibre, fat, ash, and ß-glucan) than that of the groats (TKW and fat), while field management only affected the fibre content of the groats and the TKW, ash, and ß-glucan contents of the grains. The TKW, protein, and fat contents of the different species differed significantly under both conventional and organic growing conditions, while the TKW and fibre contents of grains and groats differed under both systems. The caloric value of the final products of barley, oats, and spelt groats ranged from 334-358 kcal/100 g. This information will be useful for not only the processing industry, but also for breeders and farmers, and last, but not least, for consumers.

9.
Plant Biotechnol J ; 21(1): 150-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148785

RESUMEN

Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/genética , Fagopyrum/metabolismo , Filogenia , Estudio de Asociación del Genoma Completo , Domesticación , Proteínas de Plantas/metabolismo , Semillas/genética , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas/genética
11.
Plants (Basel) ; 11(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631743

RESUMEN

Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome.

12.
Foods ; 11(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626984

RESUMEN

The grains and milling fractions of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are widely used for both industrial and small-scale food and non-food products. This paper represents a preliminary study of the isotopic signature (δ13C, δ15N, and δ34S) to differentiate between buckwheat species (common vs. Tartary), organic and conventional cultivation farming, and different buckwheat fractions (light flour, semolina, and hulls) obtained by a traditional cereal stone-mill. Stable isotope ratios were analyzed using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results indicated that δ13C, δ15N, and δ34S values could be used to verify the origin and production practices of buckwheat and even its products.

13.
Plants (Basel) ; 11(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35050057

RESUMEN

The present study investigated the effects of cultivation practices on grain (oats) yield and yield components, such as straw yield, harvest index, thousand kernel weight, and plant lodging. In addition, multi-element composition and isotopic signature (δ13C, δ15N) of the oat grains were studied. The spring oat cultivar 'Noni' was grown in a long-term field experiment during 2015-2020, using three management practices: control without organic amendment, incorporation of manure every third year and incorporation of crop residues/cover crop in the rotation. Synthetic nitrogen (N) (0, 55, 110 and 165 kg/ha) was applied during oat development in each system. Multi-element analysis of mature grains from two consecutive years (2016 and 2017) was performed using EDXRF spectroscopy, while stable isotope ratios of carbon (C) and nitrogen (N) were obtained using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results show how cultivation practices affect yield components and isotopic and elemental signatures. Increasing the N rate improved both the oat grain and straw yields and increased susceptibility to lodging. The results show how the elemental content (Si, Ca, Zn, Fe, Ti, Br and Rb) in the oat grains were influenced by intensification, and a noticeable decrease in elemental content at higher N rates was the result of a dilution effect of increased dry matter production. The mean δ15N values in oat grains ranged from 2.5‱ to 6.4‱ and decreased with increasing N rate, while δ13C values ranged from -29.9‱ to -28.9‱. Based on the δ15N values, it was possible to detect the addition of synthetic N above an N rate of 55 kg/ha, although it was impossible to differentiate between different management practices using stable isotopes.

14.
Plants (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616298

RESUMEN

Pulses are edible seeds of plants belonging to the legume family, which are of great importance for human and animal nutrition. In this study, several nutrients, antinutrients and bioactive compounds were quantified in the seeds of ten pulses, i.e., common and runner beans, field peas, lupins (white, blue and yellow), faba beans, lentils (brown and red) and chickpeas. Homogenised, air-dried seed samples were analysed for various parameters: protein (18.0-43.1%), fat (0.6-18.5%) and phytic acid content (507-2566 mg/100 g dry weight (DW)), phenolic profile (27 phenolic compounds in total) and multi-mineral composition. The analysed phenolic compounds mainly belong to phenolic acids (hydroxybenzoic acids and hydroxycinnamic acids) and/or flavonoids (flavones, flavonols and flavanols). Total phenolic content (TPC) ranged from 719 µg/g DW in chickpeas to 5012 µg/g DW in common beans. A total of ten elements belonging to macro- (Mg, P, S, K and Ca) and micro-minerals (Cr, Mn, Fe, Zn and Mo) were determined. Using cluster analysis, pulses were divided into three groups according to the parameters studied: 1. common and runner bean; 2. field pea, white and blue lupin, faba bean, red and brown lentil and chickpea; and 3. yellow lupin. The most varying phytochemicals in terms of their content in the analysed pulses were phytic acid, quinic acid, catechin and TPC. A perfect positive significant Pearson correlation (1.00) was observed for six pairs of variables within the group of phenolic compounds.

15.
Acta Chim Slov ; 68(4): 913-920, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918772

RESUMEN

The current study involves two analytical research techniques, inductively coupled plasma-mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence (EDXRF) spectroscopy, used to determine the elemental composition of different legumes usually produced and consumed in Slovenia. Results indicate that data obtained using these methods are in agreement with certified reference materials. In total, nineteen elements were determined from twenty legume samples. An intercomparison between four macro- (P, S, K, Ca) and three microelements (Fe, Zn, Mo) measured using ICP-MS and EDXRF methods showed a strong correlation. The EDXRF was found to be a cheaper, simpler and more environmentally friendly method for determination of elements P, S, Cl, K, Ca, Fe, Zn, Mo, Sr, Rb, Ti and Br in legumes, while for the identification and determination of Na, Mg, V, Cr, Mn, Co and Cu content ICP-MS was the method of choice due to its excellent sensitivity and accuracy. Using principal component analysis (PCA), the samples of the studied legumes were classified into four groups according to their elemental composition.


Asunto(s)
Fabaceae/química , Espectrometría de Masas/métodos , Espectrometría por Rayos X/métodos , Fabaceae/metabolismo , Magnesio/análisis , Análisis de Componente Principal , Eslovenia , Sodio/análisis , Vanadio/análisis
16.
Plant J ; 108(3): 646-660, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427014

RESUMEN

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.


Asunto(s)
Productos Agrícolas/genética , Fabaceae/genética , Banco de Semillas , Bases de Datos Genéticas , Europa (Continente) , Genotipo , Cooperación Internacional , Semillas/genética
17.
Plants (Basel) ; 10(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206195

RESUMEN

Buckwheat is a nutritionally valuable crop, an alternative to common cereals also usable in gluten-free diets. The selection of buckwheat genotypes suitable for further breeding requires the characterization and evaluation of genetic resources. The main objective of this work was to evaluate selected phenotypic and morphological traits using international buckwheat descriptors, including total phenolic content and antioxidant activity, on a unique set of 136 common buckwheat accessions grown in 2019-2020 under Czech Republic conditions. In addition, UHPLC-ESI- MS/MS was used to analyze a wide spectrum of 20 phenolic compounds in buckwheat seeds, including four flavanols, three phenolic acids, seven flavonols, four flavones, and two flavanones. Significant differences among years and genotypes were observed for morphological traits (plant height and 1000-seed weight) and antioxidant activity, as well as levels of observed chemical compounds. Antioxidant activity, crude protein content, plant height and rutin content were characterized by higher mean values in 2020 than in 2019 and vice versa for total polyphenol content and 1000-seed weight. Crude protein content was the most stable across years, while total polyphenol content and rutin content varied greatly from year to year. The most abundant phenolic compounds were rutin, hyperoside, epicatechin, catechin, vitexin, isovitexin, orientin and isoorientin. Protein content was negatively correlated with plant height, catechin and epicatechin content. On the other hand, AA and TPC were positively correlated with rutin, hyperoside and chlorogenic acid. Five accessions showed high stability of the evaluated traits under changing conditions within both years of observation. These materials can be used in breeding programmes aimed at improving buckwheat genotypes with emphasis on quality traits.

18.
Food Chem ; 365: 130459, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34216911

RESUMEN

Buckwheat is a pseudocereal with important nutritional qualities and great potential for broad consumption. The study aimed to determine the biochemical composition, antioxidant properties and multi-mineral composition of the whole grains, hulls, bran, and the light flour of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat harvested in two consecutive years. Significant differences between fractions of both species were observed. On the other hand, the differences between the production years were not so significant. Biochemical and multi-mineral compositions of common and Tartary buckwheat were comparable, while significant differences between species were observed in antioxidant properties. The antioxidant potential (AOP), total phenolic content (TPC), and total flavonoid content (TFC) were higher in all fractions of Tartary buckwheat compared to individual fractions of common buckwheat. Fourteen minerals were quantified in fractions. Contents of all major minerals and most of the trace minerals were the highest in bran fraction.


Asunto(s)
Fagopyrum , Antioxidantes , Flavonoides , Harina , Fenoles
19.
Genome Biol ; 22(1): 23, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33430931

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. RESULTS: Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. CONCLUSIONS: We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.


Asunto(s)
Domesticación , Fagopyrum/genética , Fagopyrum/metabolismo , Estudio de Asociación del Genoma Completo , China , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas Genéticas , Variación Genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple
20.
Front Plant Sci ; 11: 1073, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765557

RESUMEN

Fagopyrum cymosum is considered as most probable wild ancestor of cultivated buckwheat. However, the evolutionary route from F. cymosum to F. esculentum remains to be deciphered. We hypothesized that a hybrid species exists in natural habitats between diploid F. cymosum and F. esculentum. The aim of this research was to determine the phylogenetic position of F. esculentum ssp. ancestrale and to provide new thoughts on buckwheat evolution. Different methodologies including evaluation of morphological traits, determination of secondary metabolites, fluorescence in situ hybridization (FISH), comparative chloroplast genomics, and molecular markers were deployed to determine the phylogenetic relationship of F. esculentum ssp. ancestrale with F. cymosum and F. esculentum. The ambiguity observed in morphological pattern of genetic variation in three species revealed that F. esculentum ssp. ancestrale is closely related to F. cymosum and F. esculentum. Flavonoid analysis revealed that F. esculentum ssp. ancestrale is closely related to F. esculentum. Comparative chloroplast genome analysis further supported the close proximity of F. esculentum ssp. ancestrale with F. esculentum. Additionally, molecular marker analysis revealed that F. esculentum ssp. ancestrale exhibits co-dominance with the bands amplified by F. cymosum and F. esculentum. These finding provided supporting evidence in favor of the hypothesis that F. esculentum ssp. ancestrale is a hybrid species between F. cymosum to F. esculentum, which was probably originated by spontaneous hybridization under natural conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA