Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(7): 1047-1061, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839979

RESUMEN

The lysosomal degradation of macromolecules produces diverse small metabolites exported by specific transporters for reuse in biosynthetic pathways. Here we deorphanized the major facilitator superfamily domain containing 1 (MFSD1) protein, which forms a tight complex with the glycosylated lysosomal membrane protein (GLMP) in the lysosomal membrane. Untargeted metabolomics analysis of MFSD1-deficient mouse lysosomes revealed an increase in cationic dipeptides. Purified MFSD1 selectively bound diverse dipeptides, while electrophysiological, isotope tracer and fluorescence-based studies in Xenopus oocytes and proteoliposomes showed that MFSD1-GLMP acts as a uniporter for cationic, neutral and anionic dipeptides. Cryoelectron microscopy structure of the dipeptide-bound MFSD1-GLMP complex in outward-open conformation characterized the heterodimer interface and, in combination with molecular dynamics simulations, provided a structural basis for its selectivity towards diverse dipeptides. Together, our data identify MFSD1 as a general lysosomal dipeptide uniporter, providing an alternative route to recycle lysosomal proteolysis products when lysosomal amino acid exporters are overloaded.


Asunto(s)
Dipéptidos , Lisosomas , Lisosomas/metabolismo , Animales , Dipéptidos/metabolismo , Oocitos/metabolismo , Microscopía por Crioelectrón , Ratones , Xenopus laevis , Humanos , Ratones Noqueados , Simulación de Dinámica Molecular , Simportadores/metabolismo , Simportadores/genética , Simportadores/química , Femenino , Canales de Potencial de Receptor Transitorio
2.
MAbs ; 15(1): 2210709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37211816

RESUMEN

As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of an N-glycosylation N-X-T sequon and its associated glycan should not interfere with protein folding or epitope recognition. We expressed variants of such glycoengineered VHHs in the Pichia pastoris GlycoSwitchM5 strain, allowing us to pinpoint preferred sites at which Man5GlcNAc2-glycans can be introduced at high site occupancy without affecting antigen binding. A VHH carrying predominantly a Man5GlcNAc2 N-glycan at one of these preferred sites showed highly efficient, glycan-dependent uptake by Mf4/4 macrophages in vitro and by alveolar lung macrophages in vivo, illustrating one potential application of glyco-engineered VHHs: a glycan-based targeting approach for lung macrophage endolysosomal system delivery. The set of optimal artificial VHH N-glycosylation sites identified in this study can serve as a blueprint for targeted glyco-engineering of other VHHs, enabling site-specific functionalization through the rapidly expanding toolbox of synthetic glycobiology.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/genética , Antígenos , Epítopos , Macrófagos
3.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37100053

RESUMEN

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Asunto(s)
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mutagénesis , Mutación , Oxidación-Reducción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Nat Commun ; 13(1): 7926, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566234

RESUMEN

Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Imagen Individual de Molécula , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento Viral
6.
Nat Commun ; 13(1): 1022, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197476

RESUMEN

Transport of lipids across membranes is fundamental for diverse biological pathways in cells. Multiple ion-coupled transporters take part in lipid translocation, but their mechanisms remain largely unknown. Major facilitator superfamily (MFS) lipid transporters play central roles in cell wall synthesis, brain development and function, lipids recycling, and cell signaling. Recent structures of MFS lipid transporters revealed overlapping architectural features pointing towards a common mechanism. Here we used cysteine disulfide trapping, molecular dynamics simulations, mutagenesis analysis, and transport assays in vitro and in vivo, to investigate the mechanism of LtaA, a proton-dependent MFS lipid transporter essential for lipoteichoic acid synthesis in the pathogen Staphylococcus aureus. We reveal that LtaA displays asymmetric lateral openings with distinct functional relevance and that cycling through outward- and inward-facing conformations is essential for transport activity. We demonstrate that while the entire amphipathic central cavity of LtaA contributes to lipid binding, its hydrophilic pocket dictates substrate specificity. We propose that LtaA catalyzes lipid translocation by a 'trap-and-flip' mechanism that might be shared among MFS lipid transporters.


Asunto(s)
Proteínas de Transporte de Membrana , Protones , Transporte Biológico , Lípidos , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34753818

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters are widespread in all domains of life. Bacterial MATE transporters confer multidrug resistance by utilizing an electrochemical gradient of H+ or Na+ to export xenobiotics across the membrane. Despite the availability of X-ray structures of several MATE transporters, a detailed understanding of the transport mechanism has remained elusive. Here we report the crystal structure of a MATE transporter from Aquifex aeolicus at 2.0-Å resolution. In light of its phylogenetic placement outside of the diversity of hitherto-described MATE transporters and the lack of conserved acidic residues, this protein may represent a subfamily of prokaryotic MATE transporters, which was proven by phylogenetic analysis. Furthermore, the crystal structure and substrate docking results indicate that the substrate binding site is located in the N bundle. The importance of residues surrounding this binding site was demonstrated by structure-based site-directed mutagenesis. We suggest that Aq_128 is functionally similar but structurally diverse from DinF subfamily transporters. Our results provide structural insights into the MATE transporter, which further advances our global understanding of this important transporter family.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Aquifex/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Mutagénesis Sitio-Dirigida , Filogenia , Células Procariotas/fisiología
8.
J Biol Chem ; 297(2): 100925, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214498

RESUMEN

Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes in infected Caco2 cells. Specifically, famotidine treatment inhibits histamine-induced expression of Toll-like receptor 3 (TLR3) in SARS-CoV-2 infected cells and can reduce TLR3-dependent signaling processes that culminate in activation of IRF3 and the NF-κB pathway, subsequently controlling antiviral and inflammatory responses. SARS-CoV-2-infected cells treated with famotidine demonstrate reduced expression levels of the inflammatory mediators CCL-2 and IL6, drivers of the cytokine release syndrome that precipitates poor outcome for patients with COVID-19. Given that pharmacokinetic studies indicate that famotidine can reach concentrations in blood that suffice to antagonize histamine H2 receptors expressed in mast cells, neutrophils, and eosinophils, these observations explain how famotidine may contribute to the reduced histamine-induced inflammation and cytokine release, thereby improving the outcome for patients with COVID-19.


Asunto(s)
Famotidina/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , SARS-CoV-2/efectos de los fármacos , Receptor Toll-Like 3/metabolismo , Células A549 , Sitios de Unión , Células CACO-2 , Quimiocina CCL2/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Células HeLa , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , SARS-CoV-2/fisiología , Transducción de Señal , Receptor Toll-Like 3/química , Replicación Viral
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33903171

RESUMEN

Binding of the spike protein of SARS-CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) receptor triggers translocation of the virus into cells. Both the ACE2 receptor and the spike protein are heavily glycosylated, including at sites near their binding interface. We built fully glycosylated models of the ACE2 receptor bound to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Using atomistic molecular dynamics (MD) simulations, we found that the glycosylation of the human ACE2 receptor contributes substantially to the binding of the virus. Interestingly, the glycans at two glycosylation sites, N90 and N322, have opposite effects on spike protein binding. The glycan at the N90 site partly covers the binding interface of the spike RBD. Therefore, this glycan can interfere with the binding of the spike protein and protect against docking of the virus to the cell. By contrast, the glycan at the N322 site interacts tightly with the RBD of the ACE2-bound spike protein and strengthens the complex. Remarkably, the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody. By mapping the glycan binding sites, our MD simulations aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicosilación , Humanos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/metabolismo , Internalización del Virus
10.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185526

RESUMEN

Legionella pneumophila causes a severe pneumonia known as Legionnaires' disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1'), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host-pathogen interactions.


Asunto(s)
Bacterias/enzimología , Enzimas Desubicuitinizantes/metabolismo , Línea Celular , Enzimas Desubicuitinizantes/genética , Escherichia coli , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Legionella , Legionelosis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ubiquitinación
11.
Nature ; 587(7835): 657-662, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726803

RESUMEN

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Inmunidad Innata , SARS-CoV-2/enzimología , SARS-CoV-2/inmunología , Animales , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Citocinas/química , Citocinas/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/metabolismo , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferones/inmunología , Interferones/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , FN-kappa B/inmunología , FN-kappa B/metabolismo , Unión Proteica , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Ubiquitinación , Ubiquitinas/química , Ubiquitinas/metabolismo , Tratamiento Farmacológico de COVID-19
12.
Proc Natl Acad Sci U S A ; 116(25): 12275-12284, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31160466

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters mediate excretion of xenobiotics and toxic metabolites, thereby conferring multidrug resistance in bacterial pathogens and cancer cells. Structural information on the alternate conformational states and knowledge of the detailed mechanism of MATE transport are of great importance for drug development. However, the structures of MATE transporters are only known in V-shaped outward-facing conformations. Here, we present the crystal structure of a MATE transporter from Pyrococcus furiosus (PfMATE) in the long-sought-after inward-facing state, which was obtained after crystallization in the presence of native lipids. Transition from the outward-facing state to the inward-facing state involves rigid body movements of transmembrane helices (TMs) 2-6 and 8-12 to form an inverted V, facilitated by a loose binding of TM1 and TM7 to their respective bundles and their conformational flexibility. The inward-facing structure of PfMATE in combination with the outward-facing one supports an alternating access mechanism for the MATE family transporters.


Asunto(s)
Resistencia a Múltiples Medicamentos , Proteínas de Transporte de Membrana/química , Conformación Proteica , Pyrococcus furiosus/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pyrococcus furiosus/efectos de los fármacos , Difracción de Rayos X
13.
Structure ; 27(4): 669-678.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30799077

RESUMEN

PglK is a lipid-linked oligosaccharide (LLO) flippase essential for asparagine-linked protein glycosylation in Campylobacter jejuni. Previously we have proposed a non-alternating-access LLO translocation mechanism, where postulated outward-facing states play a primary role. To investigate this unusual mechanistic proposal, we have determined a high-resolution structure of PglK that displays an outward semi-occluded state with the two nucleotide binding domains forming an asymmetric closed dimer with two bound ATPγS molecules. Based on this structure, we performed extensive molecular dynamics simulations to investigate LLO recognition and flipping. Our results suggest that PglK may employ a "substrate-hunting" mechanism to locally increase the LLO concentration and facilitate its jump into the translocation pathway, for which sugars from the LLO head group are essential. We further conclude that the release of LLO to the outside occurs before ATP hydrolysis and is followed by the closing of the periplasmic cavity of PglK.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas Bacterianas/química , Campylobacter jejuni/química , Glicosiltransferasas/química , Lipopolisacáridos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidrólisis , Cinética , Lipopolisacáridos/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
14.
Nat Commun ; 9(1): 445, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386647

RESUMEN

The membrane-associated, processive and retaining glycosyltransferase PglH from Campylobacter jejuni is part of the biosynthetic pathway of the lipid-linked oligosaccharide (LLO) that serves as the glycan donor in bacterial protein N-glycosylation. Using an unknown counting mechanism, PglH catalyzes the transfer of exactly three α1,4 N-acetylgalactosamine (GalNAc) units to the growing LLO precursor, GalNAc-α1,4-GalNAc-α1,3-Bac-α1-PP-undecaprenyl. Here, we present crystal structures of PglH in three distinct states, including a binary complex with UDP-GalNAc and two ternary complexes containing a chemo-enzymatically generated LLO analog and either UDP or synthetic, nonhydrolyzable UDP-CH2-GalNAc. PglH contains an amphipathic helix ("ruler helix") that has a dual role of facilitating membrane attachment and glycan counting. The ruler helix contains three positively charged side chains that can bind the pyrophosphate group of the LLO substrate and thus limit the addition of GalNAc units to three. These results, combined with molecular dynamics simulations, provide the mechanism of glycan counting by PglH.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Glicosiltransferasas/metabolismo , Lipopolisacáridos/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Conformación Proteica
15.
Elife ; 62017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28504641

RESUMEN

Ion channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K+ channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area. Here, we present an inactive ADP-bound structure of KtrAB from Vibrio alginolyticus, determined by cryo-electron microscopy, which, combined with EPR spectroscopy and molecular dynamics simulations, uncovers a novel regulatory mechanism for ligand-induced action at a distance. Exchange of activating ATP to inactivating ADP triggers short helical segments in the K+-translocating KtrB dimer to organize into two long helices that penetrate deeply into the regulatory RCK domains, thus connecting nucleotide-binding sites and ion gates. As KtrAB and its homolog TrkAH have been implicated as bacterial pathogenicity factors, the discovery of this functionally relevant inactive conformation may advance structure-guided drug development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/ultraestructura , Vibrio alginolyticus/enzimología , Vibrio alginolyticus/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular
16.
Proc Natl Acad Sci U S A ; 114(4): E438-E447, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069938

RESUMEN

ABC transporters form one of the largest protein superfamilies in all domains of life, catalyzing the movement of diverse substrates across membranes. In this key position, ABC transporters can mediate multidrug resistance in cancer therapy and their dysfunction is linked to various diseases. Here, we describe the 2.7-Å X-ray structure of heterodimeric Thermus thermophilus multidrug resistance proteins A and B (TmrAB), which not only shares structural homology with the antigen translocation complex TAP, but is also able to restore antigen processing in human TAP-deficient cells. TmrAB exhibits a broad peptide specificity and can concentrate substrates several thousandfold, using only one single active ATP-binding site. In our structure, TmrAB adopts an asymmetric inward-facing state, and we show that the C-terminal helices, arranged in a zipper-like fashion, play a crucial role in guiding the conformational changes associated with substrate transport. In conclusion, TmrAB can be regarded as a model system for asymmetric ABC exporters in general, and for TAP in particular.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Thermus thermophilus , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Línea Celular , Resistencia a Múltiples Medicamentos , Humanos , Modelos Moleculares , Conformación Proteica , Thermus thermophilus/metabolismo
17.
J Am Chem Soc ; 138(42): 13967-13974, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27659210

RESUMEN

The human transporter associated with antigen processing (TAP) is a 150 kDa heterodimeric ABC transport complex that selects peptides for export into the endoplasmic reticulum and subsequent loading onto major histocompatibility complex class I molecules to trigger adaptive immune responses against virally or malignantly transformed cells. To date, no atomic-resolution information on peptide-TAP interactions has been obtained, hampering a mechanistic understanding of the early steps of substrate translocation catalyzed by TAP. Here, we developed a mild method to concentrate an unstable membrane protein complex and combined this effort with dynamic nuclear polarization enhanced magic angle spinning solid-state NMR to study this challenging membrane protein-substrate complex. We were able to determine the atomic-resolution backbone conformation of an antigenic peptide bound to human TAP. Our NMR data also provide unparalleled insights into the nature of the interactions between the side chains of the antigen peptide and TAP. By combining NMR data and molecular modeling, the location of the peptide binding cavity has been identified, revealing a complex scenario of peptide-TAP recognition. Our findings reveal a structural and chemical basis of substrate selection rules, which define the crucial function of this ABC transporter in human immunity and health. This work is the first NMR study of a eukaryotic transporter protein and presents the power of solid-state NMR in this growing field.

19.
Biochemistry ; 53(33): 5444-60, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25093911

RESUMEN

Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein-protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional (1)H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the "rocking bundle" hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains.


Asunto(s)
Modelos Moleculares , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Citoplasma/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
20.
Nat Commun ; 5: 4231, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25023443

RESUMEN

The Na(+)-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.


Asunto(s)
Proteínas Portadoras/metabolismo , Sodio/metabolismo , Electrofisiología , Escherichia coli/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...