Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(17): 15012-15028, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39207123

RESUMEN

Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteolisis/efectos de los fármacos , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Femenino , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proliferación Celular/efectos de los fármacos
2.
Cell Chem Biol ; 31(2): 326-337.e11, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016478

RESUMEN

PIM kinases have important pro-tumorigenic roles and mediate several oncogenic traits, including cell proliferation, survival, and chemotherapeutic resistance. As a result, multiple PIM inhibitors have been pursued as investigational new drugs in cancer; however, response to PIM inhibitors in solid tumors has fallen short of expectations. We found that inhibition of PIM kinase activity stabilizes protein levels of all three PIM isoforms (PIM1/2/3), and this can promote resistance to PIM inhibitors and chemotherapy. To overcome this effect, we designed PIM proteolysis targeting chimeras (PROTACs) to target PIM for degradation. PIM PROTACs effectively downmodulated PIM levels through the ubiquitin-proteasome pathway. Importantly, degradation of PIM kinases was more potent than inhibition of catalytic activity at inducing apoptosis in prostate cancer cell line models. In conclusion, we provide evidence of the advantages of degrading PIM kinases versus inhibiting their catalytic activity to target the oncogenic functions of PIM kinases.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Fosforilación , Apoptosis , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1
3.
Front Endocrinol (Lausanne) ; 14: 1174119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139336

RESUMEN

Cushing's disease (CD) is a severe endocrine disorder characterized by chronic hypercortisolaemia secondary to an overproduction of adrenocorticotropic hormone (ACTH) by a pituitary adenoma. Cortisol excess impairs normal glucose homeostasis through many pathophysiological mechanisms. The varying degrees of glucose intolerance, including impaired fasting glucose, impaired glucose tolerance, and Diabetes Mellitus (DM) are commonly observed in patients with CD and contribute to significant morbidity and mortality. Although definitive surgical treatment of ACTH-secreting tumors remains the most effective therapy to control both cortisol levels and glucose metabolism, nearly one-third of patients present with persistent or recurrent disease and require additional treatments. In recent years, several medical therapies demonstrated prominent clinical efficacy in the management of patients with CD for whom surgery was non-curative or for those who are ineligible to undergo surgical treatment. Cortisol-lowering medications may have different effects on glucose metabolism, partially independent of their role in normalizing hypercortisolaemia. The expanding therapeutic landscape offers new opportunities for the tailored therapy of patients with CD who present with glucose intolerance or DM, however, additional clinical studies are needed to determine the optimal management strategies. In this article, we discuss the pathophysiology of impaired glucose metabolism caused by cortisol excess and review the clinical efficacy of medical therapies of CD, with particular emphasis on their effects on glucose homeostasis.


Asunto(s)
Diabetes Mellitus , Intolerancia a la Glucosa , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/complicaciones , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hidrocortisona/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hormona Adrenocorticotrópica , Glucosa
4.
Cancer Lett ; 547: 215775, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35667515

RESUMEN

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease that encompasses a subset of breast cancers that are defined by the absence of expression of the estrogen receptor, the progesterone receptor, and human epidermal growth factor receptor 2 (HER2, ERBB2). Among all breast cancer subtypes, TNBC is associated with the least favorable prognosis because of its aggressive clinical course and long-standing lack of effective targeted therapies. Recently, multi-omics profiling studies have provided unprecedented insights into the biological heterogeneity of TNBC, leading to the classification of these tumors into distinct molecular subtypes based on recurrent genetic aberrations, transcriptional patterns, and tumor microenvironment features. A significant number of kinase-driven molecular alterations have been identified across TNBC molecular subtypes, opening new possibilities for refining and broadening the current therapeutic landscape. Many small-molecule inhibitors of protein kinases have been tested in clinical trials in patients with TNBC, including drugs that target the PI3K/Akt/mTOR and MAPK signaling pathways, receptor tyrosine kinases, cyclin-dependent kinases, and DNA damage response signaling pathways. Although some of these agents had limited efficacy in an unselected population of TNBC patients, recent studies suggest that kinase inhibitors may provide significant clinical benefits in the framework of subtype-based and biomarker-guided therapeutic approaches. This review explores actionable therapeutic targets for TNBC molecular subtypes and describes recent clinical trials that investigated kinase inhibitors in the treatment of triple-negative breast tumors.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Medicina de Precisión , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Estrógenos/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
6.
Cell Death Dis ; 12(12): 1111, 2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34839359

RESUMEN

Chemoresistance constitutes a major challenge in the treatment of triple-negative breast cancer (TNBC). Mixed-Lineage Kinase 4 (MLK4) is frequently amplified or overexpressed in TNBC where it facilitates the aggressive growth and migratory potential of breast cancer cells. However, the functional role of MLK4 in resistance to chemotherapy has not been investigated so far. Here, we demonstrate that MLK4 promotes TNBC chemoresistance by regulating the pro-survival response to DNA-damaging therapies. We observed that MLK4 knock-down or inhibition sensitized TNBC cell lines to chemotherapeutic agents in vitro. Similarly, MLK4-deficient cells displayed enhanced sensitivity towards doxorubicin treatment in vivo. MLK4 silencing induced persistent DNA damage accumulation and apoptosis in TNBC cells upon treatment with chemotherapeutics. Using phosphoproteomic profiling and reporter assays, we demonstrated that loss of MLK4 reduced phosphorylation of key DNA damage response factors, including ATM and CHK2, and compromised DNA repair via non-homologous end-joining pathway. Moreover, our mRNA-seq analysis revealed that MLK4 is required for DNA damage-induced expression of several NF-кB-associated cytokines, which facilitate TNBC cells survival. Lastly, we found that high MLK4 expression is associated with worse overall survival of TNBC patients receiving anthracycline-based neoadjuvant chemotherapy. Collectively, these results identify a novel function of MLK4 in the regulation of DNA damage response signaling and indicate that inhibition of this kinase could be an effective strategy to overcome TNBC chemoresistance.


Asunto(s)
Daño del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Quinasas Quinasa Quinasa PAM/genética , Oncogenes/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Transfección , Neoplasias de la Mama Triple Negativas/patología
7.
Cancer Lett ; 507: 13-25, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33713737

RESUMEN

Proteasome inhibitors (PIs), used in the treatment of plasma cell myeloma (PCM), interfere with the degradation of misfolded proteins leading to activation of unfolded protein response (UPR) and cell death. However, despite initial strong antimyeloma effects, PCM cells eventually develop acquired resistance to PIs. The pleiotropic role of ʟ-glutamine (Gln) in cellular functions makes inhibition of Gln metabolism a potentially good candidate for combination therapy. Here, we show that PCM cells, both sensitive and resistant to PIs, express membrane Gln transporter (ASCT2), require extracellular Gln for survival, and are sensitive to ASCT2 inhibitors (ASCT2i). ASCT2i synergistically potentiate the cytotoxic activity of PIs by inducing apoptosis and modulating autophagy. Combination of ASCT2 inhibitor V9302 and proteasome inhibitor carfilzomib upregulates the intracellular levels of ROS and oxidative stress markers and triggers catastrophic UPR as shown by upregulated spliced Xbp1 mRNA, ATF3 and CHOP levels. Moreover, analysis of RNA sequencing revealed that the PI in combination with ASCT2i reduced the levels of Gln metabolism regulators such as MYC and NRAS. Analysis of PCM patients' data revealed that upregulated ASCT2 and other Gln metabolism regulators are associated with advanced disease stage and with PIs resistance. Altogether, we identified a potent therapeutic approach that may prevent acquired resistance to PIs and may contribute to the improvement of treatment of patients suffering from PCM.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bortezomib/farmacología , Glutamina/análogos & derivados , Glutamina/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glutamina/farmacología , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mieloma Múltiple/enzimología , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Estrés Oxidativo/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
8.
Endocrine ; 65(3): 646-655, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31165412

RESUMEN

PURPOSE: miR-410-3p plays opposite roles in different cancers and may act as an oncomiR or tumor suppressor miR. The purpose of this study was to assess the role of miR-410-3p in somatotroph, gonadotroph, and corticotroph pituitary adenomas. METHODS: Tissue samples were obtained from 75 patients with pituitary adenoma. miR-410-3p expression was assessed using qRT-PCR performed on RNA isolated from fresh frozen samples. In vitro experiments were performed on cell lines derived from somatotroph (GH3), gonadotroph (RC-4B/C), and corticotroph (AtT-20) pituitary tumors. Cells were transfected with synthetic mimic of miR-410-3p or non-targeting scrambled-miR control. Subsequently, proliferation assays and transwell invasion assays were performed. The expression of cyclin D1, E1, and B1 in cells after transfection was determined using qRT-PCR. The activation of MAPK, PTEN/AKT and STAT3 signaling pathways were assessed using western blot. RESULTS: We have found that the level of expression of miR-410-3p differs in particular types of pituitary adenomas. miR-410-3p significantly upregulates proliferation and invasiveness of RC-4B/C and AtT-20 cells, while inhibiting GH3 cells. We observed that the levels of cyclin B1 upon transfection with miR-410-3p mimic were increased in RC-4B/C and AtT-20, yet decreased in GH3 cells. We have shown that miR-410-3p promoted the activation of MAPK, PTEN/AKT, and STAT3 signaling pathways in RC-4B/C and AtT-20 cells, but suppressed their activity in GH3 cells. CONCLUSIONS: miR-410-3p acts as an oncomiR in gonadotroph and corticotroph adenoma cells, while as a tumor suppressor miR in somatotroph adenoma cells.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH/genética , Gonadotropinas/metabolismo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , MicroARNs/genética , Neoplasias Hipofisarias/genética , Transducción de Señal/genética , Línea Celular Tumoral , Proliferación Celular , Ciclinas/biosíntesis , Ciclinas/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Invasividad Neoplásica/genética , Proteína Oncogénica v-akt/genética , Fosfohidrolasa PTEN/genética , Neoplasias Hipofisarias/metabolismo , Factor de Transcripción STAT3/genética
9.
Oncogene ; 38(15): 2860-2875, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30552384

RESUMEN

Metastasis to distant organs is a major cause for solid cancer mortality, and the acquisition of migratory and invasive phenotype is a key factor in initiation of malignancy. In this study we investigated the contribution of Mixed-Lineage Kinase 4 (MLK4) to aggressive phenotype of breast cancer cells. Our TCGA cancer genomic data analysis revealed that amplification or mRNA upregulation of MLK4 occurred in 23% of invasive breast carcinoma cases. To find the association between MLK4 expression and the specific subtype of breast cancer, we performed a transcriptomic analysis of multiple datasets, which showed that MLK4 is highly expressed in triple-negative breast cancer compared to other molecular subtypes. Depletion of MLK4 in cell lines with high MLK4 expression impaired proliferation and anchorage-dependent colony formation. Moreover, silencing of MLK4 expression significantly reduced the migratory potential and invasiveness of breast cancer cells as well as the number of spheroids formed in 3D cultures. These in vitro findings translate into slower rate of tumor growth in mice upon MLK4 knock-down. Furthermore, we established that MLK4 activates NF-κB signaling and promotes a mesenchymal phenotype in breast cancer cells. Immunohistochemical staining of samples obtained from breast cancer patients revealed a strong positive correlation between high expression of MLK4 and metastatic potential of tumors, which was predominantly observed in TNBC subgroup. Taken together, our results show that high expression of MLK4 promotes migratory and invasive phenotype of breast cancer and may represent a novel target for anticancer treatment.


Asunto(s)
Movimiento Celular/ética , Quinasas Quinasa Quinasa PAM/genética , Invasividad Neoplásica/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , FN-kappa B/genética , Invasividad Neoplásica/patología , Transducción de Señal/genética , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/patología
10.
J Crohns Colitis ; 13(3): 362-373, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30321325

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel diseases are linked to an increased risk of developing colorectal cancer [CRC]. Previous studies suggested that the H2B ubiquitin ligase RING finger protein-20 [RNF20] inhibited inflammatory signaling mediated by the nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB]. However, the role of RNF40, the obligate heterodimeric partner of RNF20, in the context of inflammation and CRC has not been addressed. Here, we examined the effect of RNF40 loss on CRC cells in vitro and on inflammation and inflammatory signaling in vitro and in vivo. METHODS: We evaluated H2Bub1 levels in human and murine colorectal tumors by immunohistochemistry. Moreover, we correlated H2Bub1 and RNF40 levels in vivo and assessed the consequences of RNF40 depletion on cellular phenotype and gene expression in CRC cells in vitro. Finally, we examined the effect of a colon-specific loss of Rnf40 in a murine model of colitis, and assessed both local and systemic inflammation-associated consequences. RESULTS: In vitro studies revealed that the tumorigenic phenotype of CRC cells decreased after RNF40 depletion and displayed gene expression changes related to chromosome segregation and DNA replication, as well as decreased induction of several NF-κB-associated cytokines. This effect was associated with decreased nuclear localization of NF-κB following tumor necrosis factor alpha treatment. Consistently, the colon-specific loss of Rnf40 exerted a protective local, as well as systemic, effect following acute colitis. CONCLUSIONS: Our findings suggest that RNF40 plays a central role in the maintenance of tumorigenic features and inflammatory signaling by promoting nuclear NF-κB activity.


Asunto(s)
Colitis/genética , Colitis/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/genética , Núcleo Celular/metabolismo , Proliferación Celular/genética , Segregación Cromosómica , Replicación del ADN , Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Ratones , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/genética
11.
Biomed Pharmacother ; 107: 1183-1195, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30257332

RESUMEN

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , Animales , Carcinogénesis/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/metabolismo , Oncogenes/genética
12.
Cancer Genomics Proteomics ; 14(5): 389-401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28871006

RESUMEN

BACKGROUND/AIM: The post-transcriptional regulation of matrix metalloproteinases (MMPs) via microRNAs (miRNAs) has been recently described in numerous human malignancies. However, the exact mechanisms of miRNA-mediated MMPs deregulation in endometrial cancer (EC) remain unclear. Herein, we aimed to analyze the expression of MMP2, MMP16 and TIMP2 and identify miRNAs that modulate their expression. MATERIALS AND METHODS: Protein expression was assessed by immunohistochemistry in formalin-fixed paraffin-embedded EC samples. Target prediction algorithms were applied to select miRNAs binding the 3'UTRs of MMP16 (miR-377, miR-382, miR-410, miR-200b) or TIMP2 (miR-200b), and their levels were measured by qPCR in laser capture-microdissected tissue fragments. Luciferase assays and western blotting were used to indicate individual miRNA- mRNA interactions. RESULTS: Overexpression of MMP2 and MMP16 in cancerous tissues corresponded to down-regulation of miR-377, miR-382 and miR-410, while decreased expression of TIMP2 was associated with miR-200b up-regulation. In vitro experiments confirmed direct regulation of MMP16 by miR-382 and miR-410, and TIMP2 by miR-200b in EC Ishikawa cells. CONCLUSION: We demonstrated novel mechanisms of miRNA-mediated regulation of MMPs activity in EC.


Asunto(s)
Neoplasias Endometriales/genética , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 16 de la Matriz/genética , MicroARNs/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Transcripción Genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Línea Celular Tumoral , Regulación hacia Abajo/genética , Neoplasias Endometriales/patología , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Captura por Microdisección con Láser , Metaloproteinasa 16 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , MicroARNs/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Regulación hacia Arriba/genética
13.
Pituitary ; 20(4): 450-463, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28432562

RESUMEN

PURPOSE: MCM7 (minichromosome maintenance complex component 7), a DNA replication licensing factor, is a host gene for the oncogenic miR-106b~25 cluster. It has been recently revealed as a relevant prognostic biomarker in a variety of cancers, including pituitary adenomas. The purpose of this study was to assess whether miR-106b~25 and MCM7 levels correlate with tumor invasiveness in a cohort of ACTH-immunopositive adenomas. METHODS: Tissue samples were obtained intraoperatively from 25 patients with pituitary adenoma. Tumor invasiveness was assessed according to the Knosp grading scale. MCM7, Ki-67 and TP53 levels were assessed by immunohistochemical staining, while the expression of miR-106b-5p, miR-93-5p, miR-93-3p and miR-25-3p were measured using quantitative real-time PCR performed on RNA isolated from FFPE tissues. RESULTS: We have found a significant increase in MCM7 and Ki-67 labeling indices in invasive ACTHomas. Moreover, MCM7 was ubiquitously overexpressed in Crooke's cell adenomas. The expression of miR-93-5p was significantly elevated in invasive compared to noninvasive tumors. In addition, all four microRNAs from the miR-106b~25 cluster displayed marked upregulation in Crooke's cell adenomas. Remarkably, MCM7 and miR-106b-5p both strongly correlated with Knosp grade. A combination of MCM7 LI and miR-106b~25 cluster expression was able to accurately differentiate invasive from noninvasive tumors and had a significant discriminatory ability to predict postoperative tumor recurrence/progression. CONCLUSIONS: miR-106b~25 and its host gene MCM7 are potential novel biomarkers for invasive ACTH-immunopositive pituitary adenomas. Additionally, they are both significantly upregulated in rare Crooke's cell adenomas and might therefore contribute to their aggressive phenotype.


Asunto(s)
MicroARNs/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Neoplasias Hipofisarias/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Hipofisarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...