Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 315: 137760, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610508

RESUMEN

Indigenously isolated anaerobes encoding four quorum quenching (QQ) enzymes were applied in immobilized- and bioaugmented forms for their implications on membrane foulants, microbial taxa, and biofouling control. Two identical anaerobic membrane bioreactors (AnMBRs) with different immobilizing media, i.e. silica-alginate (AnMBR-Si) and hollow fiber-alginate (AnMBR-Hf), were sequentially operated for two conventional and three QQ based phases. The synergistic addition of QQ anaerobes in free cells and the immobilized form prolonged the membrane filtration operation by 172 ± 29% and 284 ± 12% in AnMBR-Si and AnMBR-Hf, respectively. Biocake with low surface coverage was prominent during QQ application compared to conventional phases. Despite the better control of AHLs (3OC6-, C6-, 3OC8, C8, and C10-HSL) and AI-2 at various points of QQ phases, the QQ consortium could not maintain a low concentration of signals for longer period. Therefrom, quenching of targeted signal molecules instigate the dominance of microbial species bearing non-targeted quorum sensing mechanism. The QQ significantly altered the biofilm-forming community in mixed liquor, while the members with robust signal transduction systems became dominant to counteract the QQ mechanism and were the ultimate cause of biofouling. The improved methane content in biogas and increased methanogens composition during QQ phases demonstrated the synergism of exogenous and immobilized QQ as the most viable option for long-term AnMBR operation.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Incrustaciones Biológicas/prevención & control , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Alginatos
2.
Chemosphere ; 307(Pt 4): 136101, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998728

RESUMEN

A ceramic membrane reactor (CMR) integrated with in-situ UV/O3 was assessed for post-treatment of the effluent out of an up-flow anaerobic sludge blanket (UASB) reactor treating real textile wastewater, focusing on the transformation of dissolved organic matter (DOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) revealed the transformation of heteroatomic DOM containing S, N or both to simpler DOM containing mainly C, H, and O atoms. The decreased N contents in products (N/C = 0.0249) compared to precursors (N/C = 0.0311) and the higher O/C ratios in the N-containing products suggest the removal of R-NH2 groups accompanying DOM oxidation. While, S-containing compounds in the products had lower O/C and H/C ratios, suggesting a reduced state and the transformation of R-SO3 to R-S-R. H-abstraction and OH addition were identified as the primary oxidation mechanisms, thus enhancing the dominance of highly unsaturated and phenolic DOM in the effluent (70.3%) compared to the feed (56.6%). The double bond equivalent (DBE) was also increased by 26% in the effluent compared to the feed and by 33% in products compared to precursors. These findings help understand the DOM transformation in UV/O3-assisted ceramic membrane reactors and call for comprehensive toxicity analyses of effluents from the advanced oxidation processes.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Materia Orgánica Disuelta , Oxidación-Reducción , Textiles , Aguas Residuales/química
3.
Sci Total Environ ; 811: 152349, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914989

RESUMEN

Despite a few reports of quorum quenching (QQ) in anaerobic membrane bioreactors (AnMBRs), the sensing, regulation and degradation mechanism for quorum sensing (QS) signals by indigenous QQ isolates have been barely studied. This study employed isolation and screening of indigenous QQ strains from anaerobic sludge for acyl-homoserine lactones (AHLs) degradation and membrane biofouling control. High-quality whole genome sequences of Micrococcus luteus anQ-m1, Bacillus pacificus anQ-h4, and Lysinibacillus capsici anQ-h6 were obtained, with a genome size of 2.5, 5.6, and 4.7 Mbp, respectively. Amidase-encoding amiE was the only QQ gene in anQ-m1, while anQ-h6 carries both amiE and lactonase-encoding aiiB genes. Genes responsible for QS autoinducer synthesis were not identified in anQ-m1 and anQ-h6, suggesting low potential of biofilm promotion via QS. Despite a peptidic QS system responsible for biofilm formation, anQ-h4 bears the most comprehensive QQ system, including amiE-amidase, aiiA-lactonase, CYP102A5-cytochrome oxidoreductase, and lsrK-autoinducer-2 kinase. This study elucidates QS and QQ mechanisms of potential anaerobes and provides fundamentals for designing QQ consortia to effectively control biofouling in AnMBRs.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Acil-Butirolactonas , Anaerobiosis , Reactores Biológicos , Percepción de Quorum/genética
4.
Environ Pollut ; 287: 117600, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34153605

RESUMEN

Sulfate (SO4•-) and hydroxyl-based (HO•) radical are considered potential agents for As(III) removal from aquatic environments. We have reported the synergistic role of SO4•- and HO• radicals for As(III) removal via facile synthesis of biochar-supported SO4•- species. MoS2-modified biochar (MoS2/BC), iron oxide-biochar (FeOx@BC), and MoS2-modified iron oxide-biochar (MoS2/FeOx@BC) were prepared and systematically characterized to understand the underlying mechanism for arsenic removal. The MoS2/FeOx@BC displayed much higher As(III) adsorption (27 mg/g) compared to MoS2/BC (7 mg/g) and FeOx@BC (12 mg/g). Effects of kinetics, As(III) concentration, temperature, and pH were also investigated. The adsorption of As(III) by MoS2/FeOx@BC followed the Freundlich adsorption isotherm and pseudo-second-order, indicating multilayer adsorption and chemisorption, respectively. The FTIR and XPS analysis confirmed the presence of Fe-O bonds and SO4 groups in the MoS2/FeOx@BC. Electron paramagnetic resonance (EPR) and radical quenching experiments have shown the generation of SO4•- radicals as predominant species in the presence of MoS2 and FeOx in MoS2/FeOx@BC via radical transfer from HO• to SO42-. The HO• and SO4•- radicals synergistically contributed to enhanced As(III) removal. It is envisaged that As(III) initially adsorbed through electrostatic interactions and partially undergoes oxidation, which is finally adsorbed to MoS2/FeOx@BC after being oxidized to As(V). The MoS2/FeOx@BC system could be considered a novel material for effective removal of As(III) from aqueous environments owing to its cost-effective synthesis and easy scalability for actual applications.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Disulfuros , Compuestos Férricos , Hierro , Cinética , Molibdeno , Agua , Contaminantes Químicos del Agua/análisis
5.
RSC Adv ; 10(60): 36349-36362, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517934

RESUMEN

A visible light responsive TiO2/Ag3PO4 (10 : 1) nanocomposite was prepared and successfully immobilized (12 wt%) in a spherical polymeric matrix consisting of polysulfone and alginate (10 : 6). The resulted beads featured a sponge-like structure with interconnected macrovoids and micropores, and showed high adsorption and visible-light photocatalytic activity towards various wastewater pollutants, including the widely used dye - methylene blue (k = 0.0321 min-1), and two emerging pharmaceutical contaminants - diclofenac (k = 0.018 min-1) and triclosan (k = 0.052 min-1). As determined, the ˙OH radical and h+ are the primary reactive oxygen species responsible for the photodegradation. The composite photocatalytic beads are also effective in bacterial inactivation and degradation of acyl-homoserine lactones (AHLs), the bacterial quorum sensing autoinducers triggering biofilms, thus exhibiting a promising future in wastewater disinfection and biofilm retardation. Additionally, these beads could be used in inter-switchable suspended or buoyant forms, and be effectively regenerated by H2O2 treatment, and used for multiple cycles without any significant loss in photoactivity. With these unique features, the prepared visible-light photocatalytic beads could be easily applied in large-scale water and wastewater treatment systems.

6.
Environ Sci Pollut Res Int ; 22(6): 4316-26, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25296937

RESUMEN

Heavy-metal contamination in coastal areas poses a serious threat to aquatic life and public health due to their high toxicity and bio-accumulation potential. In the present study, levels of different heavy metals (Cu, Cd, Cr, Ni, Co, Pb, Zn, and Mn), their spatial distribution, geochemical status, and enrichment indices (Cu, Cd, Cr, Ni, Co, Pb, Zn) were investigated in the sediment samples from 18 coastal sites of Pakistan. The analyses of coastal sediments indicated the presence of heavy metals in order such as Cr > Zn > Cu > Pb > Ni > Mn > Co > Cd. Geo-accumulation index (I geo), enrichment factor (EF), and contamination factor (CF) showed diverse range in heavy-metal enrichment site by site. Pollution load index (PLI) has shown that average pollution load along the entire coastal belt was not significant. Based on the mean effect range medium quotient, coastal sediments of Pakistan had 21% probability of toxicity. The estimated sedimentary load of selected heavy metals was recorded in the range of 0.3-44.7 g/cm(2)/year, while the depositional flux was in the range of 0.07-43.5 t/year. Heavy-metal inventories of 9.8 × 10(2)-3.8 × 10(5) t were estimated in the coastal sediments of Pakistan. The enrichment and contamination factors (EF and CF) suggested significant influence of anthropogenic and industrial activities along the coastal belt of Pakistan.


Asunto(s)
Contaminación Ambiental/efectos adversos , Sedimentos Geológicos/química , Metales Pesados/química , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Pakistán , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...