Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 361: 142527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838866

RESUMEN

Peri-urban environments are significant reservoirs of wastewater, and releasing this untreated wastewater from these resources poses severe environmental and ecological threats. Wastewater mitigation through sustainable approaches is an emerging area of interest. Algae offers a promising strategy for carbon-neutral valorization and recycling of urban wastewater. Aiming to provide a proof-of-concept for complete valorization and recycling of urban wastewater in a peri-urban environment in a closed loop system, a newly isolated biocrust-forming cyanobacterium Desertifilum tharense BERC-3 was evaluated. Here, the highest growth and lipids productivity were achieved in urban wastewater compared to BG11 and synthetic wastewater. D. tharense BERC-3 showed 60-95% resource recovery efficiency and decreased total dissolved solids, chemical oxygen demand, biological oxygen demand, nitrate nitrogen, ammonia nitrogen and total phosphorus contents of the water by 60.37%, 81.11%, 82.75%, 87.91%, 85.13%, 85.41%, 95.87%, respectively, making it fit for agriculture as per WHO's safety limits. Soil supplementation with 2% wastewater-cultivated algae as a soil amender, along with its irrigation with post-treated wastewater, improved the nitrogen content and microbial activity of the soil by 0.3-2.0-fold and 0.5-fold, respectively. Besides, the availability of phosphorus was also improved by 1.66-fold. The complete bioprocessing pipeline offered a complete biomass utilization. This study demonstrated the first proof-of-concept of integrating resource recovery and resource recycling using cyanobacteria to develop a peri-urban algae farming system. This can lead to establishing wastewater-driven algae cultivation systems as novel enterprises for rural migrants moving to urban areas.


Asunto(s)
Cianobacterias , Fósforo , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Cianobacterias/crecimiento & desarrollo , Nitrógeno/análisis , Reciclaje , Agricultura/métodos , Análisis de la Demanda Biológica de Oxígeno , Suelo/química
2.
Front Microbiol ; 15: 1376757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933031

RESUMEN

Tibetan tea changes during microorganism fermentation. Research on microorganisms in Tibetan tea has focused on their identification, while studies on the influence of specific microorganisms on the components and health functions of Tibetan tea are lacking. Bacillus licheniformis was inoculated into Tibetan tea for intensive fermentation, and the components of B. licheniformis-fermented tea (BLT) were detected by liquid chromatography with tandem mass spectrometry (UHPLC-TOF-MS), and then the effects of BLT on intestinal probiotic functions were investigated by experiments on mice. The results revealed the metabolites of BLT include polyphenols, alkaloids, terpenoids, amino acids, and lipids. Intensified fermentation also improved the antioxidant capacity in vivo and the protective effect on the intestinal barrier of Tibetan tea. In addition, the enhanced fermentation of Tibetan tea exerted intestinal probiotic effects by modulating the relative abundance of short-chain fatty acid-producing bacteria in the intestinal flora. Therefore, intensive fermentation with B. licheniformis can improve the health benefits of Tibetan tea.

3.
Microbiol Res ; 286: 127813, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38917638

RESUMEN

Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.

4.
J Sci Food Agric ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760970

RESUMEN

BACKGROUND: Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS: Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS: In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.

5.
iScience ; 27(4): 109361, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38523776

RESUMEN

Pakistan, among the top five most water-stressed nations globally, grapples with water scarcity owing to inadequate treatment infrastructure and groundwater overextraction. We demonstrate a successful nature-based closed-loop system to treat wastewater from urban vehicle-washing facilities, previously reliant on groundwater. An eco-friendly integrated system containing floating treatment wetlands (FTWs), subsurface flow constructed wetlands (SSF-CWs), and sand filtration (SF) was designed and installed at three vehicle-washing facilities for wastewater treatment and reuse in a loop. While the system is still operational after years, a consistent and significant reduction in water quality indicators is recorded, successfully meeting the national environmental quality standards of Pakistan. By reducing per unit water treatment costs to as low as $0.0163/m³ and achieving payback periods under a year, the embrace of these closed-loop strategies vividly underscores the imperative of transitioning to a circular economy in the domains of wastewater treatment and resource conservation.

6.
Ecotoxicol Environ Saf ; 268: 115692, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981439

RESUMEN

Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca Sistólica , Animales , Humanos , Pez Cebra , Insuficiencia Cardíaca Sistólica/metabolismo , Insuficiencia Cardíaca Sistólica/patología , Estrés Oxidativo , Cardiopatías Congénitas/inducido químicamente , Terapia de Inmunosupresión , Embrión no Mamífero
7.
Bioengineered ; 14(1): 2252207, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37712693

RESUMEN

Residual antibiotics have become emerging contaminants of concern for their adverse impact on the ecosystem. Additionally, their accumulation in the environment is increasing antibiotic resistance among pathogens. This study assessed the impact of intensification of biochar, nutrients, aeration, and bacteria (BNAB) on the remediation potential of floating treatment wetlands (FTWs) to treat amoxicillin (AMX)-contaminated water. The FTWs were developed with saplings of Vetiveria zizanioides and intensified with biochar (1.5%), nutrients (25 mgL-1 N, 25 mgL-1 P, 20 mg L1 K), aeration (7 mg L-1), and AMX-degrading bacteria. The results showed that all the amendments enhanced the AMX degradation, while the maximum reduction in COD (89%), BOD (88%), TOC (87%), and AMX (97%) was shown by the combined application of all the amendments. The combined application also enhanced plant growth and persistence of the inoculated bacteria in the water, roots, and shoots. This approach can be employed for the low-cost, environment-friendly treatment, and recycling of antibiotic-contaminated wastewater, where BNAB intensification can further improve the bioremediation efficiency of FTWs in the case of heavily polluted waters.


Vetiver grass floating treatment wetlands (FTWs) removed 83% amoxicillin.Intensification of floating treatment wetlands enhanced amoxicillin removal to 97%.Intensified-FTW removed COD, BOD, and TOC by 89%, 88%, and 87%, respectively.Potential of Intensified-FTW for bioremediation of highly polluted water is shown.


Asunto(s)
Amoxicilina , Antibacterianos , Humedales , Ecosistema , Anticuerpos ampliamente neutralizantes , Nutrientes , Bacterias , Agua
8.
Nutr Res Pract ; 17(4): 682-697, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529260

RESUMEN

BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

9.
Front Plant Sci ; 14: 1152468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409308

RESUMEN

CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.

10.
AMB Express ; 13(1): 53, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266757

RESUMEN

Tea polyphenols (TP) are the most biologically active components in tea, with antioxidant, antiobesity, and antitumor properties, as well as the ability to modulate the composition and function of intestinal microbiota. This experimental study evaluated the chemical constituents of polyphenols in Pu-erh (PTP) and Dian Hong tea (DHTP). It also investigated the co-regulatory effects of PTP and DHTP on intestinal flora and liver tissues in mice using 16 S rRNA gene and transcriptome sequencing. The results revealed that DHT had higher concentrations of EGC (epigallocatechin), C (catechin), EC (epicatechin), and EGCG (epigallocatechin gallate). In contrast, PT had higher concentrations of GA (gallic acid), ECG (epicatechin-3-gallate), TF (theaflavin), and TB (theabrownin). PTP and DHTP consumption significantly reduced the rates of weight gain in mice. Microbial community diversity was significantly higher in PTP and DHTP-treated mice than in the control group. Notably, beneficial microbes such as Lactobacillus increased significantly in PTP-treated mice, whereas Lachnospiraceae increased significantly in DHTP-treated mice. Both PTP and DHTP improved the activity of the antioxidant enzymes (SOD) and total antioxidant capacity (T-AOC) in the liver. The transcriptome analysis revealed that the beneficial effects of PTP and DHTP were due to changes in various metabolic pathways, the majority of which were related to antioxidant and lipid metabolism. This study discovered that PTP and DHTP had beneficial effects in mice via the gut-liver axis.

11.
Probiotics Antimicrob Proteins ; 15(6): 1653-1664, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36806153

RESUMEN

The use of Bacillus circulans as the sole starter provides better process control compared to natural fermentation. However, the chemical composition of fermented Tibetan tea by B. circulans and its regulatory effects on the intestine-liver axis has not been reported. For this purpose, a high-resolution liquid chromatography tandem mass spectrometry metabolomics approach was performed. The effects of fermented Tibetan tea on the intestine-liver axis of mice were also evaluated. Untargeted metabolomics analysis showed that the contents of catechin derivatives, flavonoids, phenolic acids, and terpenoids increased by 0.3, 2.38, 2.65, and 3.36%, respectively, compared with those before fermentation. Furthermore, 16S ribosomal RNA sequence analysis revealed that the relative abundance of Lactobacillus spp. in the intestine increased after consumption of fermented tea. Additionally, based on histological and quantitative PCR analyses, fermented Tibetan tea also improved intestinal development and intestinal barrier function in mouse, while increasing the antioxidant capacity of mouse liver. Thus, fermented Tibetan tea could provide beneficial health effects through the intestine-liver axis. These findings have facilitated the study of the chemical composition of Tibetan tea and provided theoretical support for its use as a natural beverage with intestinal probiotic functions.


Asunto(s)
Intestinos , , Ratones , Animales , Tibet , Fermentación , Hígado
13.
Chemosphere ; 304: 135346, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35714954

RESUMEN

Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 µmolm-2s-1 to 300 µmolm-2s-1), and light quality (white and blue). Resultantly, 300 µmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.


Asunto(s)
Chlorophyceae , Microalgas , Biomasa , Carotenoides/metabolismo , Chlorophyceae/metabolismo , Lípidos , Microalgas/metabolismo , Nitrógeno/metabolismo , Filogenia
14.
Chemosphere ; 293: 133571, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35026203

RESUMEN

Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Tecnología Química Verde , Nanopartículas del Metal/química , Extractos Vegetales , Plantas , Aguas Residuales
15.
J Proteomics ; 252: 104447, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890867

RESUMEN

Alkaliphilic cyanobacteria are suitable candidates to study the effect of alkaline wastewater cultivation on molecular metabolic responses. In the present study, the impact of wastewater, alkalinity, and alkaline wastewater cultivation was studied on the biomass production, biochemical composition, and the alkalinity responsive molecular mechanism through metabolomics. The results suggested a 1.29 to 1.44-fold higher biomass production along with improved lipid, carbohydrate, and pigment production under alkaline wastewater cultivation. The metabolomics analysis showed 1.2-fold and 5.54-fold increase in the indole-acetic acid and phytoene biosynthesis which contributed to overall enhanced cell differentiation and photo-protectiveness. Furthermore, lower levels of Ribulose-1,5-bisphosphate (RuBP), and higher levels of 2-phosphoglycerate and 3-phosphoglycerate suggested the efficient fixation of CO2 into biomass, and storage compounds including polysaccharides, lipids, and sterols. Interestingly, except L-histidine and L-phenylalanine, all the metabolites related to protein biosynthesis were downregulated in response to wastewater and alkaline wastewater cultivation. The cells protected themselves from alkalinity and nutrient stress by improving the biosynthesis of sterols, non-toxic antioxidants, and osmo-protectants. Alkaline wastewater cultivation regulated the activation of carbon concentration mechanism (CCM), glycolysis, fatty-acid biosynthesis, and shikimate pathway. The data revealed the importance of alkaline wastewater cultivation for improved CO2 fixation, wastewater treatment, and producing valuable bioproducts including phytoene, Lyso PC 18:0, and sterols. These metabolic pathways could be future targets of metabolic engineering for improving biomass and metabolite production. SIGNIFICANCE: Alkalinity is an imperative factor, responsible for the contamination control and biochemical regulation in cyanobactera, especially during the wastewater cultivation. Currently, understanding of alkaline wastewater responsive molecular mechanism is lacking and most of the studies are focused on transcriptomics of model organisms for this purpose. In this study, untargeted metabolomics was employed to analyze the impact of wastewater and alkaline wastewater on the growth, CO2 assimilation, nutrient uptake, and associated metabolic modulations of the alkaliphilic cyanobacterium Plectonema terebrans BERC10. Results unveiled that alkaline wastewater cultivation regulated the activation of carbon concentration mechanism (CCM), glycolysis, fatty-acid biosynthesis, and shikimate pathway. It indicated the feasibility of alkaline wastewater as promising low-cost media for cyanobacterium cultivation. The identified stress-responsive pathways could be future genetic targets for strain improvement.


Asunto(s)
Cianobacterias , Microalgas , Biomasa , Metabolómica , Plectonema , Aguas Residuales/química
16.
Bioresour Technol ; 333: 125194, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33910117

RESUMEN

The impact of wastewater cultivation was studied on pollutant removal, biomass production, and biosynthesis of high-value metabolites by newly isolated cyanobacteria namely Acaryochloris marina BERC03, Oscillatoria sp. BERC04, and Pleurocapsa sp. BERC06. During cultivation in urabn wastewater, its pH used to adjust from pH 8.0 to 11, offering contamination-free cultivation, and flotation-based easy harvesting. Besides, wastewater cultivation improved biomass production by 1.3-fold when compared to control along with 3.54-4.2 gL-1 of CO2 fixation, concomitantly removing suspended organic matter, total nitrogen, and phosphorus by 100%, 53%, and 88%, respectively. Biomass accumulated 26-36% carbohydrates, 15-28% proteins, 38-43% lipids, and 6.3-9.5% phycobilins, where phycobilin yield was improved by 1.6-fold when compared to control. Lipids extracted from the pigment-free biomass were trans-esterified to biodiesel where pigment extraction showed no negative impact on quality of the biodiesel. These strains demonstrated the potential to become feedstock of an integrated biorefinery using urban wastewater as low-cost growth media.


Asunto(s)
Cianobacterias , Contaminantes Ambientales , Microalgas , Biocombustibles/análisis , Biomasa , Dióxido de Carbono , Nitrógeno/análisis , Aguas Residuales
17.
Enzyme Microb Technol ; 144: 109745, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33541578

RESUMEN

Zero-valent silver nanoparticles (ZV-AgNPs) are known as potential antimicrobials and here we report antifungal activity of ZV-AgNPs against Colletotrichum falcatum Went for the first time. ZV-AgNPs were synthesized by using a native Bacillus sp. strain AW1-2, which was identified through 16S rRNA gene sequence analysis. Biogenic ZV-AgNPs were confirmed by monitoring a characteristic absorption peak of UV-vis spectroscopy that was measured at 447 nm. Further, it was found through FTIR and XRD analysis that ZV-Ag nanocrystals were capped with proteins of bacterial origin and their size ranged from 22.33-41.95 nm. The ultrastructure imaging through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the morphology of ZV-AgNPs as mono-dispersed spheres and energy dispersive X-ray spectroscopy (EDX) revealed the dominance of silver (84.21 %) in the nano-powder. The ZV-AgNPs significantly inhibited the hyphal growth of Colletotrichum falcatum Went as compared to non-treated control and commercial fungicide both in solid and broth media. The ultrastructure SEM and TEM studies revealed the disrupted hyphal structure and damage to the internal cellular organelles of Colletotrichum falcatum Went treated with 20 µg mL-1 ZV-AgNPs, respectively. It was concluded that green ZV-AgNPs of bacterial origin could be used to formulate a nano-based fungicide to effectively control Colletotrichum falcatum Went, the causal agent of red rot of sugarcane.


Asunto(s)
Bacillus , Colletotrichum , Nanopartículas del Metal , Antibacterianos , Antifúngicos/farmacología , Extractos Vegetales , ARN Ribosómico 16S/genética , Plata/farmacología , Difracción de Rayos X
18.
Bioresour Technol ; 322: 124545, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341710

RESUMEN

The present study was focused on evaluating the bioenergy potential of waste biomass of desert plant Calotropis procera. The biomass was pyrolyzed at four heating rates including 10 °Cmin-1, 20 °Cmin-1, 40 °Cmin-1, and 80 °Cmin-1. The pyrolysis reaction kinetics and thermodynamics parameters were assessed using isoconversional models namely Kissenger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink. Major pyrolysis reaction occurred between 200 and 450 °C at the conversion points (α) ranging from 0.2 to 0.6 while their corresponding reaction parameters including activation energy, enthalpy change, Gibb's free energy and pre-exponential factors were ranged from 165 to 207 kJ mol-1, 169-200 kJ mol-1, 90-42 kJ mol-1, and 1018-1026 s-1, respectively. The narrow range of pre-exponential factors indicated a uniform pyrolysis, while lower differences between enthalpy change and activation energies indicated that reactions were thermodynamically favorable. The evolved gases were dominated by propanoic acid, 3-hydroxy-, hydrazide, hydrazinecarboxamide and carbohydrazide followed by amines/amides, alcohols, acids, aldehydes/ketones, and esters.


Asunto(s)
Calotropis , Pirólisis , Biomasa , Cinética , Termogravimetría
19.
Front Microbiol ; 12: 748594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237238

RESUMEN

Traditionally, Ya'an Tibetan tea is routinely consumed by local people in the Tibet region. It is believed to possess promising anti-inflammatory benefits. This study was conducted to elucidate the protective impact of Tibetan tea extract (TTE) on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were split into four groups: control (C) group, Tibetan tea (T) group, DSS-induced model (CD) group, and Tibetan tea + DSS (TD) group. The intake of TTE significantly reduced the clinical symptoms of ulcerative colitis (UC) by alleviating the impact of cellular damage and reducing glandular hypertrophy and the infiltration of inflammatory cells. UC led to a prominent shift of the microbial communities in the gut. Interestingly, the beneficial microbes, such as Lactobacillus reuteri, Bifidobacterium choerinum, and Lactobacillus intestinalis, were significantly increased in TTE-treated mice when compared to any other experimental group. The transcriptome analysis revealed that the positive effect of TTE on UC could be attributed to changes in the G alpha (i) signaling pathway and the innate immune system. The genes related to inflammation and immune system pathways were differentially expressed in the TTE-treated group. Moreover, the relative expression of genes linked to the inflammatory TLR4/MyD88/NF-κB signaling pathway was significantly downregulated toward the level of normal control samples in the TD group. Overall, this study revealed the modulatory effect by which TTE reversed the development and severity of chronic colon damage.

20.
Artículo en Inglés | MEDLINE | ID: mdl-32656198

RESUMEN

Furfural is a major toxic byproduct found in the hydrolysate of lignocellulosic biomass, which adversely interferes with the growth and ethanol fermentation of Saccharomyces cerevisiae. The current study was focused on the impact of cofactor availability derived intracellular redox perturbation on furfural tolerance. Here, three strategies were employed in cofactor conversion in S. cerevisiae: (1) heterologous expression of NADH dehydrogenase (NDH) from E. coli which catalyzed the NADH to NAD+ and increased the cellular sensitivity to furfural, (2) overexpression of GLR1, OYE2, ZWF1, and IDP1 genes responsible for the interconversion of NADPH and NADP+, which enhanced the furfural tolerance, (3) expression of NAD(P)+ transhydrogenase (PNTB) and NAD+ kinase (POS5) which showed a little impact on furfural tolerance. Besides, a substantial redistribution of metabolic fluxes was also observed with the expression of cofactor-related genes. These results indicated that NADPH-based intracellular redox perturbation plays a key role in furfural tolerance, which suggested single-gene manipulation as an effective strategy for enhancing tolerance and subsequently achieving higher ethanol titer using lignocellulosic hydrolysate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...