Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(15): 7843-7859, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557084

RESUMEN

Two-dimensional materials have shown immense promise for gas-sensing applications due to their remarkable surface-to-volume ratios and tunable chemical properties. However, despite their potential, the utilization of ReSe2 as a gas-sensing material for nitrogen-containing molecules, including NO2, NO, and NH3, has remained unexplored. The choice of doping atoms in ReSe2 plays a pivotal role in enhancing the gas adsorption and gas-sensing capabilities. Herein, the adsorption properties of nitrogen-containing gas molecules on metal and non-metal single-atom (Au, Pt, Ni, P, and S)-doped ReSe2 monolayers have been evaluated systematically via ab initio calculations based on density functional theory. The findings strongly suggest that intrinsic ReSe2 has better selectivity toward NO2 than toward NO and NH3. Moreover, our results provide compelling evidence that all of the dopants, with the exception of S, significantly enhance both the adsorption strength and charge transfer between ReSe2 and the investigated molecules. Notably, P-decorated ReSe2 showed the highest adsorption energy for NO2 and NO (-1.93 and -1.52 eV, respectively) with charge transfer above 0.5e, while Ni-decorated ReSe2 exhibited the highest adsorption energy for NH3 (-0.76 eV). In addition, on the basis of transition theory, we found that only Au-ReSe2 and Ni-ReSe2 can serve as reusable chemiresisitve gas sensors for reliable detection of NO and NH3, respectively. Hence, our findings indicate that gas-sensing applications can be significantly improved by utilizing a single-atom-doped ReSe2 monolayer.

2.
ACS Sens ; 9(5): 2372-2382, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401047

RESUMEN

Rapid and ultrasensitive detection of toxic gases at room temperature is highly desired in health protection but presents grand challenges in the sensing materials reported so far. Here, we present a gas sensor based on novel zero dimensional (0D)/two dimensional (2D) indium oxide (In2O3)/titanium carbide (Ti3C2Tx) Schottky heterostructures with a high surface area and rich oxygen vacancies for parts per billion (ppb) level nitrogen dioxide (NO2) detection at room temperature. The In2O3/Ti3C2Tx gas sensor exhibits a fast response time (4 s), good response (193.45% to 250 ppb NO2), high selectivity, and excellent cycling stability. The rich surface oxygen vacancies play the role of active sites for the adsorption of NO2 molecules, and the Schottky junctions effectively adjust the charge-transfer behavior through the conduction tunnel in the sensing material. Furthermore, In2O3 nanoparticles almost fully cover the Ti3C2Tx nanosheets which can avoid the oxidation of Ti3C2Tx, thus contributing to the good cycling stability of the sensing materials. This work sheds light on the sensing mechanism of heterojunction nanostructures and provides an efficient pathway to construct high-performance gas sensors through the rational design of active sites.


Asunto(s)
Indio , Dióxido de Nitrógeno , Temperatura , Titanio , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Titanio/química , Indio/química , Porosidad
3.
Phys Chem Chem Phys ; 25(42): 28677-28690, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849357

RESUMEN

Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces' orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.

4.
Nanomicro Lett ; 15(1): 149, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286913

RESUMEN

Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA