RESUMEN
Erlotinib (Tarceva, OSI-774) is a potent, orally available, small-molecule inhibitor of HER1/EGFR tyrosine-kinase activity. In this study, the antitumor activity of erlotinib was evaluated in two human colorectal tumor xenograft models (LoVo and HCT116) in athymic mice. When erlotinib was administered as monotherapy, significant tumor growth inhibition (TGI) was seen in the LoVo model at both 100 mg/kg [TGI > 100%, P < 0.001; 6/10 partial regressions (PRs)] and 25 mg/kg (TGI = 79%, P < 0.001) doses. However, the HCT116 xenograft model was not responsive to any dose of erlotinib tested. The differential response to erlotinib of these two tumor models was not a result of differences in HER1/EGFR expression levels since these were similar in both cell lines. However, it was demonstrated that resistance to erlotinib in the HCT116 model may be a result of persistent activation of ERK in these tumors. Based on the single agent activity of erlotinib in LoVo tumors, a combination study with CPT-11 (Camptosar, irinotecan) was performed. CPT-11 at the optimal dose of 60 mg/kg or a lower dose of 15 mg/kg resulted in significant TGI (TGI > 100%, P < 0.001, and TGI = 93%, P < 0.001, respectively) in LoVo-bearing mice. Combination treatment with erlotinib (25 mg/kg) and CPT-11 (15 mg/kg) produced significantly greater antitumor activity (TGI > 100%, P < 0.001; 10/10 PRs) than either agent alone (P < 0.05), with no increase in toxicity. These data indicate that erlotinib can enhance the antitumor activity of CPT-11, without enhanced toxicity, in the LoVo human colorectal tumor xenograft model.