Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2567-2574, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38696667

RESUMEN

In vivo drug monitoring is crucial for evaluating the effectiveness and safety of drug treatment. Blood sampling and analysis is the current gold standard but needs professional skills and cannot meet the requirements of point-of-care testing. Dermal interstitial fluid (ISF) showed great potential to replace blood for in vivo drug monitoring; however, the detection was challenging, and the drug distribution behavior in ISF was still unclear until now. In this study, we proposed surface-enhanced Raman spectroscopy (SERS) microneedles (MNs) for the painless and real-time analysis of drugs in ISF after intravenous injection. Using methylene blue (MB) and mitoxantrone (MTO) as model drugs, the innovative core-satellite structured Au@Ag SERS substrate, hydrogel coating over the MNs, rendered sensitive and quantitative drug detection in ISF of mice within 10 min. Based on this technique, the pharmacokinetics of the two drugs in ISF was investigated and compared with those in blood, where the drugs were analyzed via liquid chromatography-mass spectrometry. It was found that the MB concentration in ISF and blood was comparable, whereas the concentration of MTO in ISF was 2-3 orders of magnitude lower than in blood. This work proposed an efficient tool for ISF drug monitoring. More importantly, it experimentally proved that the penetration ratio of blood to ISF was drug-dependent, providing insightful information into the potential of ISF as a blood alternative for in vivo drug detection.


Asunto(s)
Monitoreo de Drogas , Líquido Extracelular , Hidrogeles , Azul de Metileno , Agujas , Espectrometría Raman , Animales , Espectrometría Raman/métodos , Líquido Extracelular/química , Azul de Metileno/química , Ratones , Hidrogeles/química , Monitoreo de Drogas/métodos , Monitoreo de Drogas/instrumentación , Plata/química , Mitoxantrona/sangre , Mitoxantrona/análisis , Mitoxantrona/farmacocinética , Oro/química , Piel/metabolismo , Piel/química
2.
Talanta ; 275: 126172, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692050

RESUMEN

Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Dióxido de Silicio , Espectrometría Raman , Titanio , Animales , Espectrometría Raman/métodos , Ratones , Titanio/química , Dióxido de Silicio/química , Células RAW 264.7 , Enfermedades Inflamatorias del Intestino/metabolismo , Administración Oral , Nanopartículas/química , Distribución Tisular , Nanopartículas del Metal/química , Oro/química , Masculino , Corona de Proteínas/química , Corona de Proteínas/análisis , Corona de Proteínas/metabolismo
3.
Chem Soc Rev ; 52(24): 8500-8530, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37999922

RESUMEN

Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Inteligencia Artificial , Estudios Prospectivos , Pruebas en el Punto de Atención , Sistemas de Atención de Punto , Prueba de COVID-19
4.
J Mater Chem B ; 11(14): 3097-3105, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36952222

RESUMEN

Microneedle (MNs), as a novel dermal drug delivery formulation, have drawn a lot of attention in recent years. Drug release and diffusion behavior in dermal interstitial fluid (ISF) determines the pharmacokinetics and effectiveness of MNs, which have not been clearly elucidated until now. Herein, we develop surface-enhanced Raman scattering (SERS)-based detection MNs (D-MNs) for the sensitive analysis of model drugs in ISF. The surface of the D-MNs was deposited with a high density of hotspot-rich core-satellite gold nanoparticles, which would generate a sensitive SERS signal of a model drug (3,3'-diethylthiatricarbocyanine, DTTC) released by therapeutic MNs (T-MNs). Furthermore, the D-MNs produced an internal-standard signal for drug signal calibration, increasing the accuracy of detection. Taking advantage of the D-MNs, the release and diffusion behavior of the drug from T-MNs in the ISF of living mice was systematically studied. It was found that DTTC diffused without directional preference in ISF up to a distance of 1.5 cm. The intensities at diffusion sites decreased sharply with increasing distance from the release site (less than 0.3% at 1.5 cm). These results indicated that drug concentration gradient rather than ISF fluidity was a major driving force for the diffusion. Moreover, the application of water-soluble MN polymers, hydrophilic model drugs in T-MNs, as well as a heating or cupping treatment of mouse skin, enhanced drug diffusion in ISF. This work provides a new tool for in situ and real-time detection of molecules in ISF, which would be beneficial for the development and evaluation of MN-based therapeutic systems.


Asunto(s)
Líquido Extracelular , Nanopartículas del Metal , Ratones , Animales , Oro , Liberación de Fármacos , Espectrometría Raman
5.
ACS Sens ; 8(1): 372-380, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36638363

RESUMEN

Skin interstitial fluid (ISF)-based microneedle (MN) sensing has recently exhibited wide promise for the minimally invasive and painless diagnosis of diseases. However, it is still a great challenge to diagnose more disease types due to the limited in situ sensing techniques and insufficient ISF biomarker sources. Herein, ISF is employed to pioneer the tracking of acute peritonitis progression via surface-enhanced Raman scattering (SERS) tags labeled MNs patch technique. Densely deposited core-satellite gold nanoparticles and 3-mercaptophenylboronic acid as a Raman reporter enable the developed MNs patch with high sensitivity and selectivity in the determination of H2O2, an indicator of peritonitis development. Importantly, the MNs patch not only reliably tracks the different states of peritonitis but also evaluates the efficacy of drugs in the treatment of peritonitis, as evidenced by the altered SERS signal consistent with plasma pro-inflammatory factor (TNF-α) and peritoneum pathological manifestations. Interestingly, the major source of H2O2 in ISF of acute peritonitis investigated may not be through conventional blood capillary filtration pathway. This work provides a new route and technique for the early diagnosis of acute peritonitis and the evaluation of drug therapy effects. The developed MNs patch is promising to serve as a universal sensing tool to greatly enrich the variety and prospect of ISF-based disease diagnosis.


Asunto(s)
Nanopartículas del Metal , Peritonitis , Humanos , Líquido Extracelular/metabolismo , Oro/metabolismo , Peróxido de Hidrógeno , Peritonitis/diagnóstico , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo
6.
Anal Chem ; 94(46): 16069-16078, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36356236

RESUMEN

Microneedles (MNs) are currently one of the most promising tools for skin interstitial fluid (ISF)-based biosensing, while it is still a challenge to expand the detectable biomarkers in ISF due to limited MNs types and detection techniques. Herein, highly sensitive internal-standard surface-enhanced Raman scattering microneedles (IS-SERS-MNs) were developed, which enabled the reliable detection of bacterial metabolites in ISF as new detectable biomarkers for infection diagnosis. The developed IS-SERS-MNs can not only directly detect pyocyanin (a representative bacterial metabolite) present in mouse dermal ISF but also indirectly detect pyocyanin in the hypodermis via its diffusion into the dermis, revealing a new possible pathway for the source of biomarkers in dermal ISF. Moreover, the SERS signal of pyocyanin was also clearly detected at real mouse wounds, indicating that the developed IS-SERS-MNs have great potential in minimally invasive and painless diagnosis of bacterial infection via a new ISF route. This work not only develops IS-SERS-MNs as a powerful tool for expanding the application of SERS-based MNs but also provides a new chance for ISF-related infection diagnosis.


Asunto(s)
Líquido Extracelular , Espectrometría Raman , Ratones , Animales , Líquido Extracelular/metabolismo , Agujas , Piocianina , Piel/metabolismo , Biomarcadores/metabolismo
7.
Nat Commun ; 13(1): 5757, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180485

RESUMEN

Chiral discrimination is critical in environmental and life sciences. However, an ideal chiral discrimination strategy has not yet been developed because of the inevitable nonspecific binding entity of wrong enantiomers or insufficient intrinsic optical activities of chiral molecules. Here, we propose an "inspector" recognition mechanism (IRM), which is implemented on a chiral imprinted polydopamine (PDA) layer coated on surface-enhanced Raman scattering (SERS) tag layer. The IRM works based on the permeability change of the imprinted PDA after the chiral recognition and scrutiny of the permeability by an inspector molecule. Good enantiomer can specifically recognize and fully fill the chiral imprinted cavities, whereas the wrong cannot. Then a linear shape aminothiol molecule, as an inspector of the recognition status is introduced, which can only percolate through the vacant and nonspecifically occupied cavities, inducing the SERS signal to decrease. Accordingly, chirality information exclusively stems from good enantiomer specific binding, while nonspecific recognition of wrong enantiomer is curbed. The IRM benefits from sensitivity and versatility, enabling absolute discrimination of a wide variety of chiral molecules regardless of size, functional groups, polarities, optical activities, Raman scattering, and the number of chiral centers.


Asunto(s)
Impresión Molecular , Aminas , Espectrometría Raman , Estereoisomerismo , Compuestos de Sulfhidrilo
8.
Nanoscale ; 14(21): 7807-7816, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593208

RESUMEN

Nanoplastics (NPs) as emerging marine pollutants can be taken up by seafood organisms. It is crucial to quantitatively assess NP's distribution behavior in organisms to elucidate concentration dependent biological effects. Such a knowledge gap has remained due to the lack of reliable NP models and analytical methods. Herein, surface enhanced Raman scattering (SERS)-labeled NP models were developed and their bioavailability, distribution and accumulation in Ruditapes philippinarum, a typical marine bivalve, were quantitatively studied. Taking advantage of the sensitive and characteristic SERS signals of the NP models, distribution could be quickly and accurately obtained by the Raman imaging technique. Moreover, quantitative analysis of NPs could be performed by the detection of gold element contents via inductively coupled plasma mass spectroscopy (ICP-MS) detection. ICP-MS results revealed that after 3 days exposure of monodispersed NPs (100 nm, 0.2 mg L-1), the digestive gland accumulated 86.7% of whole-body NPs followed by gill (5.2%), mantle (5.1%), foot (1.3%), exhalant siphon (1.1%), and adductor (0.6%). Upon 11 days depuration, 98.7% of NPs in the digestive gland were excreted, whereas the clearance ratios in other organs were much lower. NP aggregates (around 1.5 µm) demonstrated similar distribution and clearance trends to the monodispersed ones. However, the accumulation amount in each organ was 15.2% to 77.6% lower. Surface adherence and passive ingestion routes resulted in NP accumulation, which contributed to the comparable NP abundance in these organs. Additionally, boiling treatment (mimicking a cooking process) did not decrease the NP amount in these organs. This work provided a dual-mode and quantitative analysis protocol for NPs for the first time, and suggested the risk of NP uptake by humans via bivalve seafood diets.


Asunto(s)
Bivalvos , Nanopartículas del Metal , Animales , Oro/química , Humanos , Cinética , Nanopartículas del Metal/química , Microplásticos , Espectrometría Raman/métodos
9.
Chemosphere ; 300: 134567, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35413362

RESUMEN

Nanoplastics are regarded as inert particulate pollutants pose potential threat to organisms. It has been verified that they can penetrate biological barriers and accumulate in organisms; however, there is still a knowledge gap on the in vivo stability and degradation behaviors due to the lack of ideal analytical methods. Herein, a surface-enhanced Raman scattering (SERS) tag labeling technique was developed to study the in vivo behaviors of polystyrene (PS) nanoplastics by comparison with silica (SiO2) nanoparticles (NPs). The labeled NPs were composed of gold NP core, attached Raman reporters as well as PS and silica shell, respectively, demonstrating strong SERS signals which were responsive to the compactness of the shells. The labeled NPs enabled the probing of in vivo structural stability of PS and silica in the liver, spleen and lung of mice after intravenous injection via the time-dependent evolution of SERS signal intensity and gold element content in the organs. The results indicated that both PS and silica model NPs retained in these organs without apparent excretion within 28 d. However, the structural stabilities of PS and silica differed dramatically as reflected by the SERS signal and tissue slice characterization. The silica shell completely degraded whereas the PS shell was still compact. Our results verified the long-term accumulation and in vivo inert property of nanoplastics, hinting that they were distinct from natural NPs and probably induce higher health risks from the aspect of the non-degradation property.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Oro/química , Ratones , Microplásticos , Poliestirenos , Dióxido de Silicio/química , Espectrometría Raman/métodos
10.
J Hazard Mater ; 425: 127959, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34891014

RESUMEN

Nanoplastics (NPs) have attracted great attention as an emerging pollution. To date, their interaction with biological systems has been studied mostly by using fluorescent-labeled NPs, which suffered from serious drawbacks such as biological autofluorescence interference and false-positive results. Reliable optically labeled NP models are eagerly desired until now. Herein, a novel near-infrared (NIR) surface-enhanced Raman scattering (SERS) labeled NP model was proposed, which gained single-particle ultra-sensitivity, deep tissue detection, multiplex labeling ability, and anti-interference property. More importantly, the NP demonstrated satisfactory in vivo signal stability which completely prevented the positive-false problems. The advantages of the NPs enabled direct, dynamic in vivo behavior imaging study in living zebrafish embryo, adult zebrafish and green vegetable Brassica rapa. It was found for the first time that NPs entered blood circulation system of zebrafish larva via dermal uptake route, which only occurred in a short 48 h-window post-hatch. NPs widely distributed in roots, shoots and leaves of Brassica rapa seedlings germinating and growing in the NP-containing hydroponic culture. Different depths of one root showed varied adsorption capabilities towards NPs with fulvic acid, lipid and sodium dodecyl sulfate eco-coronas. This work provided an ideal tool for reliable bio-NP interaction study for a variety of organisms, which could promote the research of NPs.


Asunto(s)
Microplásticos , Espectrometría Raman , Animales , Pez Cebra
11.
Anal Chem ; 93(49): 16590-16597, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34850626

RESUMEN

Understanding the in vivo behavior of photothermal nanomedicines (PTNMs) is important for drug development and evaluation. However, it is still very challenging. Herein, two key parameters, i.e., the depth of PTNMs under biological tissue and the drug release ratio of PTNMs in vivo, can be revealed by a near-infrared (NIR) light-responsive surface-enhanced Raman scattering (SERS) strategy. The fabricated PTNMs were composed of waxberry-like gold nanoparticles, model drug curcumin, and an elaborately selected NIR light-responsive Raman reporter (3,3'-diethylthiatricarbocyanine iodide, DTTC). The response mechanism of DTTC to NIR light was investigated as photodegradation. NIR light irradiation heated the gold nanoparticles, triggered the release of a model drug, and simultaneously decreased the SERS intensity of the PTNMs. In vitro experiment results revealed that the SERS intensity decrease could well reflect the depth of PTNMs with a correlation coefficient of more than 0.99. On this basis, after in situ SERS detection, the depth of PTNMs in a tumor could be revealed with satisfactory accuracy. Moreover, the decrease in the SERS intensity of PTNMs showed a highly similar trend to the increase in the drug release, suggesting that it could be used for real-time monitoring of drug release of PTNMs. This study not only opens a new avenue for the release study of many inactive fluorescent and Raman drugs of PTNMs but also provides an effective way for reporting the depth, which greatly promotes the application of PTNMs in vivo.


Asunto(s)
Oro , Nanopartículas del Metal , Liberación de Fármacos , Nanomedicina , Espectrometría Raman
12.
Biosens Bioelectron ; 174: 112825, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33243696

RESUMEN

It is still challenging to sensitively detect protein biomarkers via surface-enhanced Raman scattering (SERS) technique owing to their low Raman activity. SERS tag-based immunoassay is usually applied; however, it is laborious and needs specific antibodies. Herein, an ultrasensitive and universal "Raman indicator" sensing strategy is proposed for protein biomarkers, with the aid of a glass capillary-based molecularly imprinted SERS sensor. The sensor consists of an inner SERS substrate layer for signal enhancement and an outer mussel-inspired polydopamine imprinted layer as a recognition element. Imprinted cavities have two missions: first, selectively capturing the target protein, and second, the only passageway of Raman indicator to access SERS substrate. Specific protein recognition means filling imprinted cavities and blocking Raman indicator flow. Thus, the quantity of captured protein can be reflected by the signal decrease of ultra-Raman active indicator molecule. The capillary sensor exhibited specific and reproducible detection at the level down to 4.1 × 10-3 µg L-1, for trypsin enzyme in as-received biological samples without sample preparation. The generality of the mechanism is confirmed by using three different protein models. This platform provides a facile, fast and general route for sensitive SERS detection of Raman inactive biomacromolecules, which offers great promising utility for in situ and fast point-of-care practical bioassay.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Biomarcadores , Inmunoensayo , Espectrometría Raman
13.
Anal Chem ; 92(21): 14814-14821, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33045167

RESUMEN

Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silica-coated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tag-pair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.


Asunto(s)
Materiales Biomiméticos/química , Colorantes/química , Rayos Infrarrojos , Magnoliopsida , Dióxido de Silicio/química , Espectrometría Raman/métodos , Animales , Oro/química , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Ratones , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
14.
ACS Appl Mater Interfaces ; 12(2): 2059-2066, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31867956

RESUMEN

Bimetallic gold core-silver shell (Au@Ag) surface-enhanced Raman scattering (SERS) tags draw broad interest in the fields of biological and environmental analysis. In reported tags, silver coating tended to smooth the surface and merge the original hotspot of Au cores, which was disadvantageous to signal enhancement from the aspect of surface topography. Herein, we developed gold nanorod (AuNR)-bridged Au@Ag SERS tags with uniform three-dimensional (3D) topography for the first time. This unique structure was achieved by selecting waxberry-like Au nanoparticles (NPs) as cores, which were capped by vertically oriented AuNR arrays. Upon selective surface blocking with thiol-ligands, Ag NPs were controlled to anisotropically grow on the tips of the AuNRs, producing high-density homo- (Ag-Ag) and hetero- (Au-Ag) hotspots in a single NP. The 3D hotspots rendered this NP extraordinary SERS enhancement ability (an analytical enhancement factor of 3.4 × 106) 30 times higher than the counterpart with a smooth surface, realizing signal detection from a single NP. More importantly, multiplexing signals ("blank" or multiplex "internal standard") can be achieved by simply changing thiol-ligands, as exemplified in the synthesis of NPs with 8 signatures. Furthermore, the multifunctionality has been demonstrated in living cell/in vivo imaging, photothermal therapy, and SERS substrates for ratiometric quantitative analysis, relying on the inherent internal standard signal. The prepared Au@Ag NPs have great potential as standard tools in many SERS-related fields.


Asunto(s)
Oro/química , Nanotubos/química , Espectrometría Raman , Células A549 , Animales , Cisteamina/química , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Nanotubos/ultraestructura , Plaguicidas/análisis , Estándares de Referencia , Plata/química
15.
Anal Chem ; 91(8): 5270-5277, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30880388

RESUMEN

Surface coating determined the sensitivity and stability of surface-enhanced Raman scattering (SERS) tags in bioanalysis. The reported various coatings suffered from the drawbacks of a lack of rigidity, stability, or synthesis versatility. Herein, we demonstrated robust polystyrene (PS) coated SERS tags that could be prepared by an easy and universal approach. Taking advantages of biocompatible, transparent, compact properties of PS shell, the coated tags showed satisfactory sensitivity, biocompatibility, and superior structural stability in cell and in vivo imaging applications. More importantly, the PS coating strategy allowed for the encapsulation of SERS tags encoded with not only thiolated but also nonthiolated Raman reporters without loss of sensitivity, as exemplified in the synthesis of 9 different resonant dye-encoded tags. Moreover, the coating of SERS tags with various kinds of substrates was achieved via the same standard protocol. Comparing with widespread silica coated tags, the PS coated ones were more stable in harsh conditions and had an easily expanded ultrasensitive (resonant) tags library with much lower cost (no need of expensive sulfhydryl/isothiocyano reporters with limited types), illustrating great promise as standard analytical tools of commercialized value for bioanalysis, medical diagnostics, and environmental science studies.


Asunto(s)
Poliestirenos/química , Carbono/análisis , Tamaño de la Partícula , Péptidos/análisis , Proteínas/análisis , Dióxido de Silicio/análisis , Espectrometría Raman , Propiedades de Superficie , Titanio/análisis
16.
ACS Appl Mater Interfaces ; 10(28): 23605-23616, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29938498

RESUMEN

Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by an in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to the hotspots at the junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.


Asunto(s)
Espectrometría Raman , Animales , Oro , Membrana Dobles de Lípidos , Nanopartículas del Metal , Ratones , Nanotubos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA