Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38998376

RESUMEN

The spinning cup, a crucial component of textile equipment, relies heavily on 2A12 aluminum alloy as its primary raw material. Commonly, electroplating and chemical nickel-phosphorus (Ni-P) plating are employed to improve the surface characteristics of the object. Nevertheless, due to the growing expectations for the performance of aluminum alloys, the hardness and wear resistance of Ni-P coatings are no longer sufficient to fulfill industry standards. This study primarily focuses on the synthesis of Ni-B-PTFE nanocomposite chemical plating and its effectiveness when applied to the surface of 2A12 aluminum alloy. We examine the impact of the composition of the plating solution, process parameters, and various other factors on the pace at which the coating is deposited, the hardness of the surface, and other indicators of the coating. The research findings indicate that the composite co-deposited coating achieves its optimal surface morphology when the following conditions are met: a nickel chloride concentration of 30 g/L, an ethylenediamine concentration of 70 mL, a sodium borohydride concentration of 0.6 g/L, a sodium hydroxide concentration of 90 g/L, a lead nitrate concentration of 30 mL, a pH value of 12, a temperature of 90 °C, and a PTFE concentration of 10 mL/L. The coating exhibits consistency, density, a smooth surface, and an absence of noticeable pores or fissures. The composite co-deposited coating exhibits a surface hardness of 1109 HV0.1, which significantly surpasses the substrate's hardness of 232.38 HV0.1. The Ni-B-PTFE composite coating exhibits an average friction coefficient of around 0.12. It has a scratch width of 855.18 µm and a wear mass of 0.05 mg. This coating demonstrates superior wear resistance when compared to Ni-B coatings. The Ni-B-PTFE composite coating specimen exhibits a self-corrosion potential of -6.195 V and a corrosion current density of 7.81 × 10-7 A/cm2, which is the lowest recorded. This enhances its corrosion resistance compared to Ni-B coatings.

2.
ACS Nano ; 18(24): 15358-15386, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38837241

RESUMEN

The rapid advancement in nanofiber technologies has revolutionized the domain of yarn materials, marking a significant leap in textile technology. This review dissects the nexus between cutting-edge nanofiber technologies and yarn manufacturing, aiming to illuminate the pathway toward engineering advanced textiles with unparalleled functionality. It first discusses the fundamentals of nanofiber assemblies and spinning techniques, primarily focusing on electrospinning, centrifugal spinning, and blow spinning. Additionally, the study delves into integrating nanofiber spinning technologies with traditional and modern yarn fabrication principles, elucidating the design principles that underlie the creation of yarns incorporating nanofibers. Twisting technologies are explored to examine how they can be optimized and adapted for incorporating nanofibers, thus enabling the production of innovative nanofiber-based yarns. Special attention is given to scalable strategies like centrifugal and blow spinning, which are spotlighted for their efficiency and scalability in fabricating nanofiber yarns. This review further analyses recently developed nanofiber yarn applications, including wearable sensors, biomedical devices, moisture management textiles, and energy harvesting and storage devices. We finally present a forward-looking perspective to address unresolved issues in nanofiber-based yarn technologies.

3.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931809

RESUMEN

Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors.

4.
Materials (Basel) ; 16(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37374610

RESUMEN

In this study, a method of preparing a Ni-P-nanoPTFE composite coating on the surface of GCr15 steel for spinning rings is proposed. The method incorporates a defoamer into the plating solution to inhibit the agglomeration of nano-PTFE particles and pre-deposits a Ni-P transition layer to reduce the possibility of leakage coating. Meanwhile, the effect of varying the PTFE emulsion content in the bath on the micromorphology, hardness, deposition rate, crystal structure, and PTFE content of the composite coatings was investigated. The wear and corrosion resistances of the GCr15 substrate, Ni-P coating, and Ni-P-nanoPTFE composite coating are compared. The results show that the composite coating prepared at a PTFE emulsion concentration of 8 mL/L has the highest concentration of PTFE particles (up to 2.16 wt%). Additionally, its wear resistance and corrosion resistance are improved compared with Ni-P coating. The friction and wear study shows that the nano-PTFE particles with low dynamic friction coefficient are mixed in the grinding chip, which gives the composite coating self-lubricating characteristics, and the friction coefficient decreases to 0.3 compared with 0.4 of Ni-P coating. The corrosion study shows that the corrosion potential of the composite coating has increased by 7.6% compared with that of the Ni-P coating, which shifts from -456 mV to a more positive value of -421 mV. The corrosion current reduces from 6.71 µA to 1.54 µA, which is a 77% reduction. Meanwhile, the impedance increased from 5504 Ω·cm2 to 36,440 Ω·cm2, which is an increase of 562%.

5.
Pharmaceutics ; 14(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35745770

RESUMEN

Chitosan (CS) is a biodegradable, biocompatible, and non-toxic natural amino-poly-saccharide with antibacterial ability, owing to its positively charged amino groups. However, the low charge density leads to poor antibacterial efficiency which cannot meet the biomedical application requirements. In this study, Tobramycin (TOB) was grafted onto the backbone of oxidized chitosan (OCS) to synthesize oxidized chitosan-tobramycin (OCS-TOB). FTIR, 1H NMR and elemental analysis results demonstrated that OCS-TOB was successfully synthesized. OCS-TOB/PEO composite fibrous materials were produced by a self-made centrifugal spinning machine. In vitro experiments showed that cells proliferated on the submicro-fibrous OCS-TOB/PEO of appropriate concentration, and the antibacterial ability of OCS-TOB was much improved, compared with pristine CS. The results demonstrated that OCS-TOB/PEO nanofibrous materials could potentially be used for biomedical applications.

6.
Nanotechnology ; 33(13)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34933287

RESUMEN

Flexible conductive thin films have recently become a research area of focus in both academia and industry. In this study, a method of preparing nanofiber conductive films by centrifugal spinning is proposed. Polyurethane (PU) nanofiber films were prepared by centrifugal spinning as the flexible substrate film, and carbon nanotubes (CNTs) were used as the conducting medium, to obtain CNTs/PU nanofiber conductive films with good conductivity and elasticity. The effects of different CNT concentrations on the properties of the nanofiber films were investigated. It was found that the conductivity of the nanofiber conductive films was optimal when an impregnation concentration of 9% CNTs was used in the stretching process. Cyclic tensile resistance tests showed that the nanofiber conductive films have good durability and repeatability. Physical and structural property analysis of the CNT/PU conductive films indicate that the adsorption of the CNTs on the PU surface was successful and the CNTs were evenly dispersed on the surface of the matrix. Moreover, the CNTs improved the thermal stability of the PU membrane. The CNT/PU conductive films were pasted onto a human finger joint, wrist joint, and Adam's apple to test the detection of movement. The results showed that finger bending, wrist bending, and laryngeal prominence movement all caused a change in resistance of the conductive film, with an approximately linear curve. The results indicate that the CNT/PU nanofiber conductive film developed in this study can be used to test the motion of human joints.

7.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208135

RESUMEN

Core-shell nanofibers have great potential for bio-medical applications such as wound healing dressings where multiple drugs and growth factors are expected to be delivered at different healing phases. Compared to monoaxial nanofibers, core-shell nanofibers can control the drug release profile easier, providing sustainable and effective drugs and growth factors for wound healing. However, it is challenging to produce core-shell structured nanofibers with a high production rate at low energy consumption. Co-axial centrifugal spinning is an alternative method to address the above limitations to produce core-shell nanofibers effectively. In this study, a co-axial centrifugal spinning device was designed and assembled to produce core-shell nanofibers for controlling the release rate of ibuprofen and hEGF in inflammation and proliferation phases during the wound healing process. Core-shell structured nanofibers were confirmed by TEM. This work demonstrated that the co-axial centrifugal spinning is a high productivity process that can produce materials with a 3D environment mimicking natural tissue scaffold, and the specific drug can be loaded into different layers to control the drug release rate to improve the drug efficiency and promote wound healing.

8.
Pharmaceutics ; 12(6)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521627

RESUMEN

Nanofibrous biomaterials have huge potential for drug delivery, due to their structural features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and biodegradable. Different technologies and their corresponding advantages and disadvantages for manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be improved by modifying the surface. The loading and releasing of drug molecules, which play a significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight into the fabrication of functional polymeric nanofibers for drug delivery.

9.
Polymers (Basel) ; 11(10)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554183

RESUMEN

While electrospinning has been widely employed to spin nanofibers, its low production rate has limited its potential for industrial applications. Comparing with electrospinning, centrifugal spinning technology is a prospective method to fabricate nanofibers with high productivity. In the current study, key parameters of the centrifugal spinning system, including concentration, rotational speed, nozzle diameter and nozzle length, were studied to control fiber diameter. An empirical model was established to determine the final diameters of nanofibers via controlling various parameters of the centrifugal spinning process. The empirical model was validated via fabrication of carboxylated chitosan (CCS) and polyethylene oxide (PEO) composite nanofibers. DSC and TGA illustrated that the thermal properties of CCS/PEO nanofibers were stable, while FTIR-ATR indicated that the chemical structures of CCS and PEO were unchanged during composite fabrication. The empirical model could provide an insight into the fabrication of nanofibers with desired uniform diameters as potential biomedical materials. This study demonstrated that centrifugal spinning could be an alternative method for the fabrication of uniform nanofibers with high yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...