Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Transl Sci ; 8(1): e75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715567

RESUMEN

Background: There is no consensus on how to determine appropriate financial compensation for research recruitment. Selecting incentive amounts that are reasonable and respectful, without undue inducement, remains challenging. Previously, we demonstrated that incentive amount significantly impacts participants' willingness to complete various hypothetical research activities. Here we further explore this relationship in a mock decentralized study. Methods: Adult ResearchMatch volunteers were invited to join a prospective study where interested individuals were given an opportunity to view details for a study along with participation requirements, then offered a randomly generated compensation amount between $0 and $50 to enroll and participate. Individuals agreeing to participate were then asked to complete tasks using a remote mobile application (MyCap), for two weeks. Tasks included a weekly survey, a daily gratitude journal and daily phone tapping task. Results: Willingness to participate was 85% across all incentive levels but not significantly impacted by amount. Task completion appeared to increase as a function of compensation until a plateau at $25. While participants described the study as low burden and reported that compensation was moderately important to their decision to join, only 31% completed all study tasks. Conclusion: While offering compensation in this study did not have a strong effect on enrollment rate, this work provides insight into participant motivation when joining and participating in studies employing mobile applications.

2.
Pancreas ; 51(6): 598-603, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206465

RESUMEN

ABSTRACT: Recruitment and retention of patients with acute pancreatitis (AP) in clinical studies can be challenging. While some obstacles are similar to other clinical conditions, some are unique to AP. Identifying potential barriers early and developing targeted solutions can help optimize recruitment and retention in AP studies. Such pre-emptive and detailed planning can help prospective, longitudinal studies focus on exocrine and endocrine complications of AP in accurately measuring outcomes. This article highlights the challenges in recruitment and retention strategies in AP studies and reviews available resources to create opportunities to address them. We describe the multifaceted approach used by the Recruitment and Retention Committee of the Type 1 Diabetes in Acute Pancreatitis Consortium, which builds upon earlier experiences to develop a recruitment and retention plan for the DREAM (Diabetes RElated to Acute pancreatitis and its Mechanisms) study.


Asunto(s)
Diabetes Mellitus Tipo 1 , Pancreatitis , Enfermedad Aguda , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Humanos , Pancreatitis/complicaciones , Pancreatitis/diagnóstico , Estudios Prospectivos
3.
Exp Neurol ; 326: 113180, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31930992

RESUMEN

In humans, the majority of sustained traumatic brain injuries (TBIs) are classified as 'mild' and most often a result of a closed head injury (CHI). The effects of a non-penetrating CHI are not benign and may lead to chronic pathology and behavioral dysfunction, which could be worsened by repeated head injury. Clinical-neuropathological correlation studies provide evidence that conversion of tau into abnormally phosphorylated proteotoxic intermediates (p-tau) could be part of the pathophysiology triggered by a single TBI and enhanced by repeated TBIs. However, the link between p-tau and CHI in rodents remains controversial. To address this question experimentally, we induced a single CHI or two CHIs to WT or rTg4510 mice. We found that 2× CHI increased tau phosphorylation in WT mice and rTg4510 mice. Behavioral characterization in WT mice found chronic deficits in the radial arm water maze in 2× CHI mice that had partially resolved in the 1× CHI mice. Moreover, using Manganese-Enhanced Magnetic Resonance Imaging with R1 mapping - a novel functional neuroimaging technique - we found greater deficits in the rTg4510 mice following 2× CHI compared to 1× CHI. To integrate our findings with prior work in the field, we conducted a systematic review of rodent mild repetitive CHI studies. Following Prisma guidelines, we identified 25 original peer-reviewed papers. Results from our experiments, as well as our systematic review, provide compelling evidence that tau phosphorylation is modified by experimental mild TBI studies; however, changes in p-tau levels are not universally reported. Together, our results provide evidence that repetitive TBIs can result in worse and more persistent neurological deficits compared to a single TBI, but the direct link between the worsened outcome and elevated p-tau could not be established.


Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Traumatismos Cerrados de la Cabeza/complicaciones , Traumatismos Cerrados de la Cabeza/psicología , Tauopatías/complicaciones , Tauopatías/psicología , Animales , Ratones , Ratones Mutantes Neurológicos
4.
Acta Neuropathol ; 137(4): 571-583, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30759285

RESUMEN

There is a fundamental gap in understanding the consequences of tau-ribosome interactions. Tau oligomers and filaments hinder protein synthesis in vitro, and they associate strongly with ribosomes in vivo. Here, we investigated the consequences of tau interactions with ribosomes in transgenic mice, in cells, and in human brain tissues to identify tau as a direct modulator of ribosomal selectivity. First, we performed microarrays and nascent proteomics to measure changes in protein synthesis. Using regulatable rTg4510 tau transgenic mice, we determined that tau expression differentially shifts both the transcriptome and the nascent proteome, and that the synthesis of ribosomal proteins is reversibly dependent on tau levels. We further extended these results to human brains and found that tau pathologically interacts with ribosomal protein S6 (rpS6 or S6), a crucial regulator of translation. Consequently, protein synthesis under translational control of rpS6 was reduced under tauopathic conditions in Alzheimer's disease brains. Our data establish tau as a driver of RNA translation selectivity. Moreover, since regulation of protein synthesis is critical for learning and memory, aberrant tau-ribosome interactions in disease could explain the linkage between tauopathies and cognitive impairment.


Asunto(s)
Encéfalo/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcriptoma , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Ratones , Ratones Transgénicos , Proteínas Ribosómicas/genética , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/genética
5.
Nat Med ; 25(1): 165-175, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617325

RESUMEN

Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models. Knockdown of brain FNDC5/irisin impairs long-term potentiation and novel object recognition memory in mice. Conversely, boosting brain levels of FNDC5/irisin rescues synaptic plasticity and memory in AD mouse models. Peripheral overexpression of FNDC5/irisin rescues memory impairment, whereas blockade of either peripheral or brain FNDC5/irisin attenuates the neuroprotective actions of physical exercise on synaptic plasticity and memory in AD mice. By showing that FNDC5/irisin is an important mediator of the beneficial effects of exercise in AD models, our findings place FNDC5/irisin as a novel agent capable of opposing synapse failure and memory impairment in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Fibronectinas/metabolismo , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal , Condicionamiento Físico Animal , Adolescente , Adulto , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Fibronectinas/líquido cefalorraquídeo , Fibronectinas/genética , Humanos , Potenciación a Largo Plazo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal
6.
Neurobiol Aging ; 72: 188.e3-188.e12, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30201328

RESUMEN

Systematic epistasis analyses in multifactorial disorders are an important step to better characterize complex genetic risk structures. We conducted a hypothesis-free sex-stratified genome-wide screening for epistasis contributing to Alzheimer's disease (AD) susceptibility. We identified a statistical epistasis signal between the single nucleotide polymorphisms rs3733980 and rs7175766 that was associated with AD in males (genome-wide significant pBonferroni-corrected=0.0165). This signal pointed toward the genes WW and C2 domain containing 1, aka KIBRA; 5q34 and TLN2 (talin 2; 15q22.2). Gene-based meta-analysis in 3 independent consortium data sets confirmed the identified interaction: the most significant (pmeta-Bonferroni-corrected=9.02*10-3) was for the single nucleotide polymorphism pair rs1477307 and rs4077746. In functional studies, WW and C2 domain containing 1, aka KIBRA and TLN2 coexpressed in the temporal cortex brain tissue of AD subjects (ß=0.17, 95% CI 0.04 to 0.30, p=0.01); modulated Tau toxicity in Drosophila eye experiments; colocalized in brain tissue cells, N2a neuroblastoma, and HeLa cell lines; and coimmunoprecipitated both in brain tissue and HEK293 cells. Our finding points toward new AD-related pathways and provides clues toward novel medical targets for the cure of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Epistasis Genética/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/genética , Caracteres Sexuales , Talina/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Metaanálisis como Asunto , Factores Sexuales
7.
Sci Rep ; 8(1): 4638, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545551

RESUMEN

Research into gene therapy for heart failure has gained renewed interest as a result of improved safety and availability of adeno-associated viral vectors (AAV). While magnetic resonance imaging (MRI) is standard for functional assessment of gene therapy outcomes, quantitation of gene transfer/expression relies upon tissue biopsy, fluorescence or nuclear imaging. Imaging of gene expression through the use of genetically encoded chemical exchange saturation transfer (CEST)-MRI reporter genes could be combined with clinical cardiac MRI methods to comprehensively probe therapeutic gene expression and subsequent outcomes. The CEST-MRI reporter gene Lysine Rich Protein (LRP) was cloned into an AAV9 vector and either administered systemically via tail vein injection or directly injected into the left ventricular free wall of mice. Longitudinal in vivo CEST-MRI performed at days 15 and 45 after direct injection or at 1, 60 and 90 days after systemic injection revealed robust CEST contrast in myocardium that was later confirmed to express LRP by immunostaining. Ventricular structure and function were not impacted by expression of LRP in either study arm. The ability to quantify and link therapeutic gene expression to functional outcomes can provide rich data for further development of gene therapy for heart failure.


Asunto(s)
Medios de Contraste , Dependovirus/genética , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos/genética , Corazón/fisiología , Imagen por Resonancia Magnética/métodos , Animales , Células Cultivadas , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Masculino , Ratones , Ratones Endogámicos C57BL
8.
J Alzheimers Dis ; 62(1): 347-359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439332

RESUMEN

Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. DS individuals have an increased risk of developing Alzheimer's disease (AD)-like pathology and dementia by the age of 40 due to the triplication of several genes involved in the formation of amyloid plaques and tau tangles. Further, DS and AD are characterized by the aberrant accumulation of unfolded/misfolded proteins resulting from over-burdened protein quality control systems. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers a cellular stress response called the unfolded protein response (UPR). Long-term activation of the UPR mediates neuronal dysfunction in AD. We hypothesized that the UPR is impacted in a mouse model of DS. To test this, we performed gene and protein expression analysis of ER stress markers in the Ts65Dn mouse model of DS at 3, 9, and 18 months. We identified activation of the PERK pathway in Ts65Dn DS mice at 3 months of age compared to euploid controls. We also determined that the early and overt UPR activation decreased with age, the UPR signal was significantly reduced by 18 months. Our data suggest that UPR activation in DS mouse models occurs early before consistent brain neurodegeneration and might be an essential contributor to dys-proteostasis.


Asunto(s)
Síndrome de Down/metabolismo , Respuesta de Proteína Desplegada/fisiología , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Factores de Tiempo , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
9.
Neurobiol Aging ; 56: 78-86, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500878

RESUMEN

Tauopathies, the most common of which is Alzheimer's disease (AD), constitute the most crippling neurodegenerative threat to our aging population. Tauopathic patients have significant cognitive decline accompanied by irreversible and severe brain atrophy, and it is thought that neuronal dysfunction begins years before diagnosis. Our current understanding of tauopathies has yielded promising therapeutic interventions but have all failed in clinical trials. This is partly due to the inability to identify and intervene in an effective therapeutic window early in the disease process. A major challenge that contributes to the definition of an early therapeutic window is limited technologies. To address these challenges, we modified and adapted a manganese-enhanced magnetic resonance imaging (MEMRI) approach to provide sensitive and quantitative power to detect changes in broad neuronal function in aging mice. Considering that tau tangle burden correlates well with cognitive impairment in Alzheimer's patients, we performed our MEMRI approach in a time course of aging mice and an accelerated mouse model of tauopathy. We measured significant changes in broad neuronal function as a consequence of age, and in transgenic mice, before the deposition of bona fide tangles. This MEMRI approach represents the first diagnostic measure of neuronal dysfunction in mice. Successful translation of this technology in the clinic could serve as a sensitive diagnostic tool for the definition of effective therapeutic windows.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/fisiopatología , Neuroimagen/métodos , Neuronas/patología , Neuronas/fisiología , Tauopatías/diagnóstico por imagen , Tauopatías/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Diagnóstico Precoz , Humanos , Manganeso , Ratones Transgénicos , Enfermedades Neurodegenerativas/patología , Sensibilidad y Especificidad , Tauopatías/patología
10.
PLoS One ; 11(2): e0149451, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26871438

RESUMEN

A prevailing neuroinflammation hypothesis is that increased production of proinflammatory cytokines contributes to progressive neuropathology, secondary to the primary damage caused by a traumatic brain injury (TBI). In support of the hypothesis, post-injury interventions that inhibit the proinflammatory cytokine surge can attenuate the progressive pathology. However, other post-injury neuroinflammatory responses are key to endogenous recovery responses. Therefore, it is critical that pharmacological attenuation of detrimental or dysregulated neuroinflammatory processes avoid pan-suppression of inflammation. MW151 is a CNS-penetrant, small molecule experimental therapeutic that restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis without immunosuppression. Post-injury administration of MW151 in a closed head injury model of mild TBI suppressed acute cytokine up-regulation and downstream cognitive impairment. Here, we report results from a diffuse brain injury model in mice using midline fluid percussion. Low dose (0.5-5.0 mg/kg) administration of MW151 suppresses interleukin-1 beta (IL-1ß) levels in the cortex while sparing reactive microglia and astrocyte responses. To probe molecular mechanisms, we used live cell imaging of the BV-2 microglia cell line to demonstrate that MW151 does not affect proliferation, migration, or phagocytosis of the cells. Our results provide insight into the roles of glial responses to brain injury and indicate the feasibility of using appropriate dosing for selective therapeutic modulation of injurious IL-1ß increases while sparing other glial responses to injury.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Interleucina-1beta/inmunología , Microglía/efectos de los fármacos , Pirimidinas/uso terapéutico , Animales , Antiinflamatorios/química , Encéfalo/inmunología , Encéfalo/patología , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Interleucina-1beta/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/inmunología , Microglía/patología , Fagocitosis/efectos de los fármacos , Pirimidinas/química
11.
J Neurosci ; 36(3): 1001-7, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791227

RESUMEN

One of the most common symptoms of Alzheimer's disease (AD) and related tauopathies is memory loss. The exact mechanisms leading to memory loss in tauopathies are not yet known; however, decreased translation due to ribosomal dysfunction has been implicated as a part of this process. Here we use a proteomics approach that incorporates subcellular fractionation and coimmunoprecipitation of tau from human AD and non-demented control brains to identify novel interactions between tau and the endoplasmic reticulum (ER). We show that ribosomes associate more closely with tau in AD than with tau in control brains, and that this abnormal association leads to a decrease in RNA translation. The aberrant tau-ribosome association also impaired synthesis of the synaptic protein PSD-95, suggesting that this phenomenon contributes to synaptic dysfunction. These findings provide novel information about tau-protein interactions in human brains, and they describe, for the first time, a dysfunctional consequence of tau-ribosome associations that directly alters protein synthesis. Significance statement: Despite the identification of abnormal tau-ribosomal interactions in tauopathies >25 years ago, the consequences of this association remained elusive until now. Here, we show that pathological tau associates closely with ribosomes in AD brains, and that this interaction impairs protein synthesis. The overall result is a stark reduction of nascent proteins, including those that participate in synaptic plasticity, which is crucial for learning and memory. These data mechanistically link a common pathologic sign, such as the appearance of pathological tau inside brain cells, with cognitive impairments evident in virtually all tauopathies.


Asunto(s)
Neuronas/metabolismo , Neuronas/patología , Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Proteínas tau/biosíntesis , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Masculino , Microsomas/metabolismo , Microsomas/patología , Tauopatías/metabolismo , Tauopatías/patología
12.
Curr Alzheimer Res ; 13(2): 150-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26679859

RESUMEN

The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term "PERK-opathies" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Enfermedades Neurodegenerativas/fisiopatología , eIF-2 Quinasa/metabolismo , Animales , Humanos
13.
J Alzheimers Dis ; 48(3): 687-702, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26402096

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is pathologically characterized by the formation of extracellular amyloid plaques and intraneuronal tau tangles. We recently identified that tau associates with proteins known to participate in endoplasmic reticulum (ER)-associated degradation (ERAD); consequently, ERAD becomes dysfunctional and causes neurotoxicity. We hypothesized that tau associates with other ER proteins, and that this association could also lead to cellular dysfunction in AD. Portions of human AD and non-demented age matched control brains were fractionated to obtain microsomes, from which tau was co-immunoprecipitated. Samples from both conditions containing tau and its associated proteins were analyzed by mass spectrometry. In total, we identified 91 ER proteins that co-immunoprecipitated with tau; 15.4% were common between AD and control brains, and 42.9% only in the AD samples. The remainder, 41.8% of the proteins, was only seen in the control brain samples. We identified a variety of previously unreported interactions between tau and ER proteins. These proteins participate in over sixteen functional categories, the most abundant being involved in RNA translation. We then determined that association of tau with these ER proteins was different between the AD and control samples. We found that tau associated equally with the ribosomal protein L28 but more robustly with the ribosomal protein P0. These data suggest that the differential association between tau and ER proteins in disease could reveal the pathogenic processes by which tau induces cellular dysfunction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Retículo Endoplásmico/metabolismo , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Western Blotting , Retículo Endoplásmico/patología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Masculino , Espectrometría de Masas , Microscopía Confocal , Microsomas/metabolismo , Microsomas/patología , Proteoma , Lóbulo Temporal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA