Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113634, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194969

RESUMEN

Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.


Asunto(s)
Epilepsia , Proteómica , Animales , Ratones , Axones/metabolismo , Epilepsia/metabolismo , Plasticidad Neuronal , Oligodendroglía/metabolismo , Proteínas/metabolismo
2.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36828548

RESUMEN

Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.


Asunto(s)
Proteínas ADAM , Axones , Vaina de Mielina , Proteínas del Tejido Nervioso , Canales de Potasio con Entrada de Voltaje , Potenciales de Acción , Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Proteínas ADAM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
3.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948005

RESUMEN

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética Inversa
4.
EMBO J ; 41(17): e108780, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815410

RESUMEN

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Asunto(s)
Cresta Neural , Células de Schwann , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Nervios Periféricos , Células de Schwann/metabolismo
5.
Cell Rep ; 37(11): 110107, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910912

RESUMEN

What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas ADAM/fisiología , Encéfalo/metabolismo , Epilepsia/prevención & control , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas del Tejido Nervioso/fisiología , Proteínas 14-3-3/genética , Animales , Encéfalo/patología , Epilepsia/metabolismo , Epilepsia/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Glia ; 69(11): 2605-2617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288120

RESUMEN

Disruption of axon-glia interactions in the peripheral nervous system has emerged as a major cause of arthrogryposis multiplex congenita (AMC), a condition characterized by multiple congenital postural abnormalities involving the major joints. Several genes crucially important to the biology of Schwann cells have now been implicated with AMC. One such gene is LGI4 which encodes a secreted glycoprotein. LGI4 is expressed and secreted by Schwann cells and binds its receptor ADAM22 on the axonal membrane to drive myelination. Homozygous mutations in LGI4 or ADAM22 results in severe congenital hypomyelination and joint contractures in mice. Recently bi-allelic LGI4 loss of function mutations has been described in three unrelated families with severe AMC. Two individuals in a fourth, non-consanguineous family were found to be compound heterozygous for two LGI4 missense mutations. It is not known how these missense mutations affect the biology of LGI4. Here we investigated whether these missense mutations affected the secretion of the protein, its ADAM22 binding capacity, or its myelination-promoting function. We demonstrate that the mutations largely affect the progression of the mutant protein through the endomembrane system resulting in severely reduced expression. Importantly, binding to ADAM22 and myelination-promoting activity appear largely unaffected, suggesting that treatment with chemical chaperones to improve secretion of the mutant proteins might prove beneficial.


Asunto(s)
Artrogriposis , Animales , Artrogriposis/genética , Artrogriposis/metabolismo , Axones/metabolismo , Humanos , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Schwann/metabolismo
7.
Nat Commun ; 12(1): 3707, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140478

RESUMEN

While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor , Proteínas de Homeodominio/metabolismo , Melanoma/metabolismo , Factores del Dominio POU/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Melanoma/genética , Melanoma/mortalidad , Melanoma/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mutación , Factores del Dominio POU/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , ARN Interferente Pequeño , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/secundario , Melanoma Cutáneo Maligno
8.
Nat Commun ; 11(1): 3420, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647127

RESUMEN

Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination. Acetylated eEF1A1 (Ac-eEF1A1) translocates into the nucleus of myelinating cells where it binds to Sox10, a key transcription factor for PNS and CNS myelination and remyelination, to drag Sox10 out of the nucleus. We show that the lysine acetyltransferase Tip60 acetylates eEF1A1, whereas the histone deacetylase HDAC2 deacetylates eEF1A1. Promoting eEF1A1 deacetylation maintains the activation of Sox10 target genes and increases PNS and CNS remyelination efficiency. Taken together, these data identify a major mechanism of Sox10 regulation, which appears promising for future translational studies on PNS and CNS remyelination.


Asunto(s)
Factor 1 de Elongación Peptídica/metabolismo , Remielinización/genética , Activación Transcripcional/genética , Acetilación , Envejecimiento/metabolismo , Animales , Desdiferenciación Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Ratones , Modelos Biológicos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/fisiología , Recuperación de la Función/efectos de los fármacos , Remielinización/efectos de los fármacos , Factores de Transcripción SOXE/metabolismo , Factor de Transcripción STAT3/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Teofilina/farmacología , Transactivadores/metabolismo , Activación Transcripcional/efectos de los fármacos
9.
Biol Open ; 8(5)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31110056

RESUMEN

The rapid evolution of super-resolution light microscopy has narrowed the gap between light and electron microscopy, allowing the imaging of molecules and cellular structures at high resolution within their normal cellular and tissue context. Multimodal imaging approaches such as correlative light electron microscopy (CLEM) combine these techniques to create a tool with unique imaging capacity. However, these approaches are typically reserved for specialists, and their application to the analysis of neural tissue is challenging. Here we present SuperCLEM, a relatively simple approach that combines super-resolution fluorescence light microscopy (FLM), 3D electron microscopy (3D-EM) and rendering into 3D models. We demonstrate our workflow using neuron-glia cultures from which we first acquire high-resolution fluorescent light images of myelinated axons. After resin embedding and re-identification of the region of interest, serially aligned EM sections are acquired and imaged using a serial block face scanning electron microscope (SBF-SEM). The FLM and 3D-EM datasets are then combined to render 3D models of the myelinated axons. Thus, the SuperCLEM imaging pipeline is a useful new tool for researchers pursuing similar questions in neuronal and other complex tissue culture systems.

10.
J Comp Neurol ; 526(14): 2231-2256, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29943833

RESUMEN

The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion ( > 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.


Asunto(s)
Núcleos Cerebelosos/citología , Núcleos Cerebelosos/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Anciano , Animales , Colina O-Acetiltransferasa/metabolismo , Gránulos Citoplasmáticos , Femenino , Hurones , Humanos , Inmunohistoquímica , Macaca , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Terminales Presinápticos/fisiología , Seguimiento Ocular Uniforme/fisiología , Conejos , Ratas , Ratas Wistar , Formación Reticular/citología , Formación Reticular/fisiología , Especificidad de la Especie
11.
J Neurosci ; 37(16): 4255-4269, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28320842

RESUMEN

After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population.SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Fenotipo , Factor de Transcripción STAT3/genética , Células de Schwann/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Ratones , Factor de Transcripción STAT3/metabolismo , Células de Schwann/citología
12.
Nat Neurosci ; 19(8): 1050-1059, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294512

RESUMEN

Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an 'inhibitor of inhibitors' in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/genética , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas Represoras/genética , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Ratones Transgénicos , Nervios Periféricos/metabolismo , Células de Schwann/citología , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
13.
Blood ; 127(11): 1426-37, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26834239

RESUMEN

The Gata2 transcription factor is a pivotal regulator of hematopoietic cell development and maintenance, highlighted by the fact that Gata2 haploinsufficiency has been identified as the cause of some familial cases of acute myelogenous leukemia/myelodysplastic syndrome and in MonoMac syndrome. Genetic deletion in mice has shown that Gata2 is pivotal to the embryonic generation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). It functions in the embryo during endothelial cell to hematopoietic cell transition to affect hematopoietic cluster, HPC, and HSC formation. Gata2 conditional deletion and overexpression studies show the importance of Gata2 levels in hematopoiesis, during all developmental stages. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, there has been no direct study of Gata2 expressing cells during normal hematopoiesis. In this study, we generate a Gata2Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. We show that all the HSCs are Gata2 expressing. However, not all HPCs in the aorta, vitelline and umbilical arteries, and fetal liver require or express Gata2. These Gata2-independent HPCs exhibit a different functional output and genetic program, including Ras and cyclic AMP response element-binding protein pathways and other Gata factors, compared with Gata2-dependent HPCs. Our results, indicating that Gata2 is of major importance in programming toward HSC fate but not in all cells with HPC fate, have implications for current reprogramming strategies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Aorta/citología , Aorta/embriología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Linaje de la Célula , Células Cultivadas , Técnicas de Reprogramación Celular , Factor de Transcripción GATA2/deficiencia , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/fisiología , Genes Reporteros , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/fisiología , Hígado/citología , Hígado/embriología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transcriptoma , Transgenes , Arterias Umbilicales/citología , Arterias Umbilicales/embriología
15.
J Biol Chem ; 290(2): 727-43, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25416780

RESUMEN

The transcription factor Miz1 (Myc-interacting zinc finger 1) is a known regulator of the cell cycle but also has cell cycle-independent functions. Here we analyzed the role of Miz1 in the peripheral nervous system, using an early embryonic conditional knock-out model in which the Miz1 POZ domain is ablated in Schwann cells. Although the development of myelinated nerve fibers was not impaired, Miz1ΔPOZ mice acquired behavioral signs of a peripheral neuropathy at the age of 3 months. At this time, ultrastructural analysis of the sciatic nerve showed de- and dysmyelination of fibers, with massive outfoldings and a focal infiltration of macrophages. Although the expression of genes encoding structural myelin proteins, such as periaxin, myelin basic protein, and myelin protein zero, was decreased, genes associated with a negative regulation of myelination, including c-Jun, Sox2, and Id2, were up-regulated in Miz1ΔPOZ mice compared with controls. In animals older than 4 months, the motor disabilities vanished, and the ultrastructure of the sciatic nerve exhibited numerous tomacula and remyelinated fibers, as indicated by thinner myelin. No second acute attack was observed up to the age of 1 year. Thus, the deletion of the Miz1 POZ domain in Schwann cells induces an acute neuropathy with a subsequent regeneration in which there is ongoing balancing between de- and remyelination. Miz1ΔPOZ mice are impaired in the maintenance of myelinated fibers and are a promising model for studying remyelination in adult peripheral nerves.


Asunto(s)
Regeneración Nerviosa/genética , Proteínas Nucleares/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Sistema Nervioso Periférico/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Células de Schwann/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Proteínas Nucleares/genética , Sistema Nervioso Periférico/crecimiento & desarrollo , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/terapia , Proteínas Inhibidoras de STAT Activados/genética , Estructura Terciaria de Proteína/genética , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Ubiquitina-Proteína Ligasas
16.
Nat Med ; 21(1): 19-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25485908

RESUMEN

Epilepsy is one of the most common and intractable brain disorders. Mutations in the human gene LGI1, encoding a neuronal secreted protein, cause autosomal dominant lateral temporal lobe epilepsy (ADLTE). However, the pathogenic mechanisms of LGI1 mutations remain unclear. We classified 22 reported LGI1 missense mutations as either secretion defective or secretion competent, and we generated and analyzed two mouse models of ADLTE encoding mutant proteins representative of the two groups. The secretion-defective LGI1(E383A) protein was recognized by the ER quality-control machinery and prematurely degraded, whereas the secretable LGI1(S473L) protein abnormally dimerized and was selectively defective in binding to one of its receptors, ADAM22. Both mutations caused a loss of function, compromising intracellular trafficking or ligand activity of LGI1 and converging on reduced synaptic LGI1-ADAM22 interaction. A chemical corrector, 4-phenylbutyrate (4PBA), restored LGI1(E383A) folding and binding to ADAM22 and ameliorated the increased seizure susceptibility of the LGI1(E383A) model mice. This study establishes LGI1-related epilepsy as a conformational disease and suggests new therapeutic options for human epilepsy.


Asunto(s)
Proteínas ADAM/metabolismo , Epilepsia del Lóbulo Frontal/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas/genética , Convulsiones/genética , Trastornos del Sueño-Vigilia/genética , Proteínas ADAM/química , Proteínas ADAM/genética , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Frontal/patología , Epilepsia del Lóbulo Frontal/terapia , Predisposición Genética a la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fenilbutiratos/administración & dosificación , Pliegue de Proteína/efectos de los fármacos , Proteínas/metabolismo , Convulsiones/patología , Convulsiones/terapia , Trastornos del Sueño-Vigilia/patología , Trastornos del Sueño-Vigilia/terapia
17.
Nat Commun ; 5: 4991, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25255972

RESUMEN

The Schwann cell (SC)-axon interface represents a membrane specialization that integrates axonal signals to coordinate cytoskeletal dynamics resulting in myelination. Here we show that LKB1/Par-4 is asymmetrically localized to the SC-axon interface and co-localizes with the polarity protein Par-3. Using purified SCs and myelinating cocultures, we demonstrate that localization is dependent on the phosphorylation of LKB1 at serine-431. SC-specific deletion of LKB1 significantly attenuates developmental myelination, delaying the initiation and altering the myelin extent into adulthood, resulting in a 30% reduction in the conduction velocity along the adult sciatic nerves. Phosphorylation of LKB1 by protein kinase A is essential to establish the asymmetric localization of LKB1 and Par-3 and rescues the delay in myelination observed in the SC-specific knockout of LKB1. Our findings suggest that SC polarity may coordinate multiple signalling complexes that couple SC-axon contact to the redistribution of specific membrane components necessary to initiate and control myelin extent.


Asunto(s)
Polaridad Celular , Vaina de Mielina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Schwann/citología , Células de Schwann/enzimología , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Ratas , Células de Schwann/metabolismo
18.
J Comp Neurol ; 522(18): 4057-73, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25048219

RESUMEN

Among sodium channel isoforms, Nav 1.6 is selectively expressed at nodes of Ranvier in both the CNS and the PNS. However, non-Nav 1.6 isoforms such as Nav 1.2 are also present at the CNS nodes in early development but gradually diminish later. It has been proposed that myelination is part of a glia-neuron signaling mechanism that produces this change in nodal isoform expression. The present study used isoform-specific antibodies to demonstrate that, in the PNS, four other neuronal sodium channel isoforms were also clustered at nodes in early development but eventually disappeared during maturation. To study possible roles of myelination in such transitions, we investigated the nodal expression of selected isoforms in the sciatic nerve of the transgenic mouse Oct6(ΔSCE/ßgeo) , whose PNS myelination is delayed in the first postnatal week but eventually resumes. We found that delayed myelination retarded the formation of nodal channel clusters and altered the expression-elimination patterns of sodium channel isoforms, resulting in significantly reduced expression levels of non-Nav 1.6 isoforms in such delayed nodes. However, delayed myelination did not significantly affect the gene expression, protein synthesis, or axonal trafficking of any isoform studied. Rather, we found evidence for a developmentally programmed increase in neuronal Nav 1.6 expression with constant or decreasing neuronal expression of other isoforms that were unaffected by delayed myelination. Thus our results suggest that, in the developmental isoform switch of the PNS, myelination does not play a signaling role as that proposed for the CNS but rather serves only to form nodal clusters from existing isoform pools.


Asunto(s)
Nódulos de Ranvier/metabolismo , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Canales de Sodio/metabolismo , Animales , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Immunoblotting , Inmunohistoquímica , Vértebras Lumbares , Ratones Transgénicos , Análisis por Micromatrices , Mutación , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Development ; 141(8): 1749-56, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715463

RESUMEN

The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Vaina de Mielina/metabolismo , Filogenia , Proteínas ADAM/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Axones/metabolismo , Secuencia Conservada , Prueba de Complementación Genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Sistema Nervioso Periférico/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Relación Estructura-Actividad , Pez Cebra
20.
Development ; 141(7): 1553-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598164

RESUMEN

Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin ß1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.


Asunto(s)
Vaina de Mielina/fisiología , Nervios Periféricos/fisiología , Sistema Nervioso Periférico/fisiología , Profilinas/fisiología , Animales , Transporte Axonal/genética , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuropéptidos/fisiología , Seudópodos/genética , Células de Schwann/fisiología , Proteína de Unión al GTP rac1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA