Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Trop Med Hyg ; 108(1): 51-60, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36410320

RESUMEN

Larval source management (LSM) could reduce malaria transmission when executed alongside core vector control strategies. Involving communities in LSM could increase intervention coverage, reduce operational costs, and promote sustainability via community buy-in. We assessed the effectiveness of community-led LSM to reduce anopheline larval densities in 26 villages along the perimeter of Majete Wildlife Reserve in southern Malawi. The communities formed LSM committees which coordinated LSM activities in their villages following specialized training. Effectiveness of larviciding by LSM committees was assessed via pre- and post-spray larval sampling. The effect of community-led LSM on anopheline larval densities in intervention villages was assessed via comparisons with densities in non-LSM villages over a period of 14 months. Surveys involving 502 respondents were undertaken in intervention villages to explore community motivation and participation, and factors influencing these outcomes. Larviciding by LSM committees reduced anopheline larval densities in post-spray sampling compared with pre-spray sampling (P < 0.0001). No differences were observed between anopheline larval densities during pre-spray sampling in LSM villages and those in non-LSM villages (P = 0.282). Knowledge about vector biology and control, and someone's role in LSM motivated community participation in the vector control program. Despite reducing anopheline larval densities in LSM villages, the impact of the community-led LSM could not be detected in our study setting because of low mosquito densities after scale-up of core malaria control interventions. Still, the contributions of the intervention in increasing a community's knowledge of malaria, its risk factors, and its control methods highlight potential benefits of the approach.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaui/epidemiología , Control de Mosquitos/métodos , Malaria/prevención & control , Mosquitos Vectores , Ecosistema , Participación de la Comunidad , Larva
2.
Viruses ; 14(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36016375

RESUMEN

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Asunto(s)
COVID-19 , Granjas , Visón , SARS-CoV-2 , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Femenino , Masculino , Visón/virología , Países Bajos/epidemiología , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
3.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34080762

RESUMEN

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Animales Salvajes , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/epidemiología , Perros , Granjas , Humanos , Visón , SARS-CoV-2
4.
Nat Commun ; 12(1): 6802, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815406

RESUMEN

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Evolución Molecular , Granjas , Visón/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Secuencia de Aminoácidos , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Teorema de Bayes , Brotes de Enfermedades , Humanos , Países Bajos/epidemiología , Filogenia , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de Proteína , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...