Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 12(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064921

RESUMEN

In tomato (Solanum lycopersicum), there are at least three SlMLO (Mildew resistance Locus O) genes acting as susceptibility genes for the powdery mildew disease caused by Oidium neolycopersici, namely SlMLO1, SlMLO5 and SlMLO8. Of the three homologs, the SlMLO1 gene plays a major role since a natural mutant allele called ol-2 can almost completely prevent fungal penetration by formation of papillae. The ol-2 allele contains a 19-bp deletion in the coding sequence of the SlMLO1 gene, resulting in a premature stop codon within the second cytoplasmic loop of the predicted protein. In this study, we have developed a new genetic resource (M200) in the tomato cv. Micro-Tom genetic background by means of ethyl methane sulfonate (EMS) mutagenesis. The mutant M200 containing a novel allele (the m200 allele) of the tomato SlMLO1 gene showed profound resistance against powdery mildew with no fungal sporulation. Compared to the coding sequence of the SlMLO1 gene, the m200 allele carries a point mutation at T65A. The SNP results in a premature stop codon L22* located in the first transmembrane domain of the complete SlMLO1 protein. The length of the predicted protein is 21 amino acids, while the SlMLO1 full-length protein is 513 amino acids. A high-resolution melting (HRM) marker was developed to distinguish the mutated m200 allele from the SlMLO1 allele in backcross populations. The mutant allele conferred recessive resistance that was associated with papillae formation at fungal penetration sites of plant epidermal cells. A comprehensive list of known mlo mutations found in natural and artificial mutants is presented, which serves as a particularly valuable resource for powdery mildew resistance breeding.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ascomicetos/patogenicidad , Metanosulfonato de Etilo/toxicidad , Solanum lycopersicum/microbiología , Mutagénesis , Mutágenos/toxicidad , Mutación Puntual , Polimorfismo de Nucleótido Simple
2.
Genes (Basel) ; 11(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137951

RESUMEN

A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties. Known mutations in fruit size and shape genes could well explain the fruit size variation, and fruit colour variation could be well explained by known mutations in key genes of the carotenoid and flavonoid pathway. The presence and phenotype of several plant architecture affecting mutations, such as self-pruning (sp), compound inflorescence (s), jointless-2 (j-2), and potato leaf (c) were also confirmed. This study provides valuable phenotypic information on important plant growth- and quality-related traits in this collection. The allelic distribution of known genes that underlie these traits provides insight into the role and importance of these genes in tomato domestication and breeding. This resource can be used to support (precision) breeding strategies for tomato crop improvement.


Asunto(s)
Solanum lycopersicum/genética , Bases de Datos Genéticas , Domesticación , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/normas , Variación Genética , Genoma de Planta , Genotipo , Solanum lycopersicum/clasificación , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Fenotipo , Filogenia , Fitomejoramiento , Sitios de Carácter Cuantitativo
3.
Plant J ; 103(3): 1189-1204, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32369642

RESUMEN

Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders' germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine-derived volatiles (PHEVs) 2-phenylethanol, phenylacetaldehyde and 1-nitro-2-phenylethane. Fruits of near-isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose-hip-like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene-editing-based (CRISPR-CAS9) reverse-genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.


Asunto(s)
Boratos/metabolismo , Fructosa/análogos & derivados , Genes de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Solanum lycopersicum/genética , Boratos/normas , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Calidad de los Alimentos , Fructosa/metabolismo , Fructosa/normas , Edición Génica , Genes de Plantas/fisiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/normas , Fenilalanina/metabolismo , Carácter Cuantitativo Heredable , Compuestos Orgánicos Volátiles/metabolismo
4.
Plant Biotechnol J ; 18(3): 805-813, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31483929

RESUMEN

Crossover formation during meiosis in plants is required for proper chromosome segregation and is essential for crop breeding as it allows an (optimal) combination of traits by mixing parental alleles on each chromosome. Crossover formation commences with the production of a large number of DNA double-strand breaks, of which only a few result in crossovers. A small number of genes, which drive the resolution of DNA crossover intermediate structures towards non-crossovers, have been identified in Arabidopisis thaliana. In order to explore the potential of modification of these genes in interspecific hybrids between crops and their wild relatives towards increased production of crossovers, we have used CRISPR/Cas9-mutagenesis in an interspecific tomato hybrid to knockout RecQ4. A biallelic recq4 mutant was obtained in the F1 hybrid of Solanum lycopersicum and S. pimpinellifolium. Compared with the wild-type F1 hybrid, the F1 recq4 mutant was shown to have a significant increase in crossovers: a 1.53-fold increase when directly observing ring bivalents in male meiocytes microscopically and a 1.8-fold extension of the genetic map when measured by analysing SNP markers in the progeny (F2) plants. This is one of the first demonstrations of increasing crossover frequency in interspecific hybrids by manipulating genes in crossover intermediate resolution pathways and the first to do so by directed mutagenesis. SIGNIFICANCE STATEMENT: Increasing crossover frequency during meiosis can speed up or simplify crop breeding that relies on meiotic crossovers to introduce favourable alleles controlling important traits from wild relatives into crops. Here we show for the first time that knocking out an inhibitor of crossovers in an interspecific hybrid between tomato and its relative wild species using CRISPR/Cas9-mutagenesis results in increased recombination between the two genomes.


Asunto(s)
Sistemas CRISPR-Cas , Intercambio Genético , RecQ Helicasas/genética , Solanum lycopersicum/genética , Técnicas de Inactivación de Genes , Hibridación Genética , Meiosis , Fitomejoramiento
5.
Theor Appl Genet ; 132(2): 531-541, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30470858

RESUMEN

KEY MESSAGE: QTLs for insect resistance parameters, trichome type IV development, and more than 200 non-volatile metabolites, including 76 acyl sugars, all co-locate at the end of Chromosome 2 of Solanum galapagense. Host plant resistance is gaining importance as more and more insecticides are being banned due to environmental concerns. In tomato, resistance towards insects is found in wild relatives and has been attributed to the presence of glandular trichomes and their specific phytochemical composition. In this paper, we describe the results from a large-scale QTL mapping of data from whitefly resistance tests, trichome phenotyping and a comprehensive metabolomics analysis in a recombinant inbred line population derived from a cross between the cultivated Solanum lycopersicum and the wild relative S. galapagense, which is resistant to a range of pest insects. One major QTL (Wf-1) was found to govern the resistance against two different whitefly species. This QTL co-localizes with QTLs for the presence of trichomes type IV and V, as well as all 76 acyl sugars detected and about 150 other non-volatile phytochemicals, including methyl esters of the flavonols myricetin and quercetin. Based on these results, we hypothesize that Wf-1 is regulating the formation of glandular trichome type IV on the leaf epidermis, enabling the production and accumulation of bioactive metabolites in this type of trichomes.


Asunto(s)
Hemípteros , Herbivoria , Sitios de Carácter Cuantitativo , Solanum/genética , Animales , Mapeo Cromosómico , Hojas de la Planta/química , Solanum/química , Tricomas/química , Tricomas/genética
6.
Plant Dis ; 102(2): 300-308, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30673530

RESUMEN

The pathogenic gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. is the most harmful bacterium to tomatoes in many countries with a cooler climate. Multilocus sequence analysis was performed on five housekeeping genes (bipA, gyrB, kdpA, ligA, and sdhA) and three virulence-related genes (ppaA, chpC, and tomA) to determine evolutionary relationships and population structure of 108 C. michiganensis subsp. michiganensis strains collected from Turkey between 1996 and 2012. Based on these analyses, we concluded that C. michiganensis subsp. michiganensis in Turkey is highly uniform. However, at least four novel C. michiganensis subsp. michiganensis strains were recently introduced, possibly at the beginning of the 1990s. The singletons might point to additional sources or to strains that have evolved locally in Turkey.


Asunto(s)
Actinomycetales/genética , Genes Bacterianos , Genes Esenciales , Tipificación de Secuencias Multilocus , Turquía
7.
BMC Genet ; 15: 142, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539894

RESUMEN

BACKGROUND: Host plant resistance has been proposed as one of the most promising approaches in whitefly management. Already in 1995 two quantitative trait loci (Tv-1 and Tv-2) originating from S. habrochaites CGN1.1561 were identified that reduced the oviposition rate of the greenhouse whitefly (Trialeurodes vaporariorum). After this first study, several others identified QTLs affecting whitefly biology as well. Generally, the QTLs affecting oviposition were highly correlated with a reduction in whitefly survival and the presence of high densities of glandular trichomes type IV. The aim of our study was to further characterize Tv-1 and Tv-2, and to determine their role in resistance against Bemisia tabaci. RESULTS: We selected F2 plants homozygous for the Tv-1 and Tv-2 QTL regions and did three successive backcrosses without phenotypic selection. Twenty-three F2BC3 plants were phenotyped for whitefly resistance and differences were found in oviposition rate of B. tabaci. The F2BC3 plants with the lowest oviposition rate had an introgression on Chromosome 5 in common. Further F2BC4, F2BC4S1 and F2BC4S2 families were developed, genotyped and phenotyped for adult survival, oviposition rate and trichome type and density. It was possible to confirm that an introgression on top of Chr. 5 (OR-5), between the markers rs-2009 and rs-7551, was responsible for reducing whitefly oviposition rate. CONCLUSION: We found a region of 3.06 Mbp at the top of Chr. 5 (OR-5) associated with a reduction in the oviposition rate of B. tabaci. This reduction was independent of the presence of the QTLs Tv-1 and Tv-2 as well as of the presence of trichomes type IV. The OR-5 locus will provide new opportunities for resistance breeding against whiteflies, which is especially relevant in greenhouse cultivation.


Asunto(s)
Hemípteros/fisiología , Oviposición , Solanum lycopersicum/genética , Solanum/genética , Animales , Femenino , Genes de Plantas , Estudios de Asociación Genética , Herbivoria , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
8.
Theor Appl Genet ; 114(6): 1071-80, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17273845

RESUMEN

Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F(2) mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rbcq2 and Rbcq4a) were identified. As it was probable that this study had not identified all QTLs involved in resistance we developed an introgression line (IL) population (n = 30), each containing a S. habrochaites introgression in the S. lycopersicum cv. Moneymaker genetic background. On average each IL contained 5.2% of the S. habrochaites genome and together the lines provide an estimated coverage of 95%. The level of susceptibility to B. cinerea for each of the ILs was assessed in a greenhouse trial and compared to the susceptible parent S. lycopersicum cv. Moneymaker. The effect of the three previously identified loci could be confirmed and seven additional loci were detected. Some ILs contains multiple QTLs and the increased resistance to B. cinerea in these ILs is in line with a completely additive model. We conclude that this set of QTLs offers good perspectives for breeding of B. cinerea resistant cultivars and that screening an IL population is more sensitive for detection of QTLs conferring resistance to B. cinerea than the analysis in an F(2) population.


Asunto(s)
Botrytis/patogenicidad , Genética de Población , Inmunidad Innata/genética , Sitios de Carácter Cuantitativo , Solanum/genética , Solanum/inmunología , Botrytis/clasificación , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Marcadores Genéticos , Genoma de Planta , Heterocigoto , Homocigoto , Modelos Genéticos , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo Genético , Recombinación Genética , Semillas/genética , Programas Informáticos , Solanum/clasificación
9.
Mol Plant Microbe Interact ; 18(4): 354-62, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15828687

RESUMEN

Tomato powdery mildew caused by Oidium neolycopersici has become a globally important disease of tomato (Lycopersicon esculentum). To study the defense responses of tomato triggered by tomato powdery mildew, we first mapped a set of resistance genes to O. neolycopersici from related Lycopersicon species. An integrated genetic map was generated showing that all the dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) are located on tomato chromosome 6 and are organized in three genetic loci. Then, near-isogenic lines (NIL) were produced that contain the different dominant Ol genes in a L. esculentum genetic background. These NIL were used in disease tests with local isolates of O. neolycopersici in different geographic locations, demonstrating that the resistance conferred by different Ol genes was isolate-dependent and, hence, may be race-specific. In addition, the resistance mechanism was analyzed histologically. The mechanism of resistance conferred by the dominant Ol genes was associated with hypersensitive response, which varies in details depending on the Ol-gene in the NIL, while the mechanism of resistance governed by the recessive gene ol-2 on tomato chromosome 4 was associated with papillae formation.


Asunto(s)
Ascomicetos/patogenicidad , Genes Dominantes , Genes de Plantas , Glucanos/genética , Solanum lycopersicum/genética , Ascomicetos/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Marcadores Genéticos , Desequilibrio de Ligamiento , Escala de Lod , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Polimorfismo de Longitud del Fragmento de Restricción , Sitios de Carácter Cuantitativo
10.
Mol Plant Microbe Interact ; 16(2): 169-76, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12575751

RESUMEN

Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.


Asunto(s)
Hongos Mitospóricos/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Prueba de Complementación Genética , Marcadores Genéticos , Inmunidad Innata/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...