Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncogene ; 43(28): 2184-2198, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789663

RESUMEN

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proliferación Celular , Proteínas del Citoesqueleto , Proteínas con Dominio LIM , MicroARNs , Proteínas E7 de Papillomavirus , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , MicroARNs/genética , Humanos , Femenino , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular/genética , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/patología , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Animales , Ratones , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
2.
J Autoimmun ; 146: 103219, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696927

RESUMEN

Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.


Asunto(s)
Colágeno , Modelos Animales de Enfermedad , Fibroblastos , Fibrosis , Ratones Noqueados , Receptores Inmunológicos , Esclerodermia Sistémica , Animales , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Ratones , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Bleomicina/efectos adversos , Piel/patología , Piel/metabolismo , Piel/inmunología , Transducción de Señal , Masculino , Femenino , Células Cultivadas
3.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293147

RESUMEN

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.

4.
mBio ; 13(6): e0281922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409073

RESUMEN

Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Animales , Humanos , Mycobacterium marinum/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulencia , Factores de Virulencia/metabolismo , Sistemas de Secreción Tipo VII/metabolismo
5.
Tuberculosis (Edinb) ; 124: 101983, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32829077

RESUMEN

The ability to genetically engineer pathogenic mycobacteria has increased significantly over the last decades due to the generation of new molecular tools. Recently, the application of the Streptococcus pyogenes and the Streptococcus thermophilus CRISPR-Cas9 systems in mycobacteria has enabled gene editing and efficient CRISPR interference-mediated transcriptional regulation. Here, we converted CRISPR interference into an efficient genome editing tool for mycobacteria. We demonstrate that the Streptococcus thermophilus CRISPR1-Cas9 (Sth1Cas9) is functional in Mycobacterium marinum and Mycobacterium tuberculosis, enabling highly efficient and precise DNA breaks and indel formation, without any off-target effects. In addition, with dual sgRNAs this system can be used to generate two indels simultaneously or to create specific deletions. The ability to use the power of the CRISPR-Cas9-mediated gene editing toolbox in M. tuberculosis with a single step will accelerate research into this deadly pathogen.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Streptococcus thermophilus/genética , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR/metabolismo , Catalasa/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Mutación INDEL , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , ARN Guía de Kinetoplastida/genética , Streptococcus thermophilus/enzimología
6.
mBio ; 10(5)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31662454

RESUMEN

Tuberculosis, one of the world's most severe infectious diseases, is caused by Mycobacterium tuberculosis A major weapon of this pathogen is a unique cell wall that protects the pathogen from eradication by the immune system. Mycobacteria have specialized secretion systems, e.g., type VII secretion or ESX systems, to transport substrates across this cell wall. The largest group of proteins that are secreted by these ESX systems are the PE proteins. Previously, it was shown that the N-terminal PE domain of about 100 amino acids is required for secretion. Here, we describe the identification of an aspartic protease, designated PecA, that removes (part of) this PE domain at the cell surface. Nearly all of the observed PE_PGRS proteins are processed by PecA. Interestingly, the protease itself is also a secreted PE protein and subject to self-cleavage. Furthermore, a defect in surface processing has no effect on the activity of the PE lipase protein LipY but does seem to affect the functioning of other virulence factors, as a pecA mutant strain of Mycobacterium marinum shows moderate attenuation in zebrafish larvae. In conclusion, our results reveal the presence of a functional aspartic acid protease in M. marinum that cleaves LipY, itself as well as other members of the PE_PGRS family. Finally, mutants lacking PecA show growth attenuation in vivo, suggesting that PecA plays a role during infection.IMPORTANCE Aspartic proteases are common in eukaryotes and retroviruses but are relatively rare among bacteria (N. D. Rawlings and A. Bateman, BMC Genomics 10:437, 2009, https://doi.org/10.1186/1471-2164-10-437). In contrast to eukaryotic aspartic proteases, bacterial aspartic proteases are generally located in the cytoplasm. We have identified a surface-associated mycobacterial aspartic protease, PecA, which cleaves itself and many other type VII secretion substrates of the PE_PGRS family. PecA is present in most pathogenic mycobacterial species, including M. tuberculosis In addition, pathogenicity of M. marinum is reduced in the ΔpecA mutant, indicating that PecA contributes to virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Péptido Hidrolasas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Animales , Hidrolasas de Éster Carboxílico , Pared Celular/metabolismo , Larva , Mycobacterium marinum , Virulencia , Factores de Virulencia/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...