Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 116: 104912, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38848899

RESUMEN

Probiotics offer health advantages when consumed in adequate quantities. As ongoing research identifies promising new strains, ensuring their viability and functionality through simple preservation methods is vital for success within the probiotic industry. This study employed a factorial design to investigate the combined effects of four cryoprotectants [C1: MRS broth + 14 % (w/v) glycerol, C2: Aqueous solution containing 4 % (w/v) trehalose, 6 % (w/v) skimmed milk, and 4 % (w/v) sodium glutamate, C3: Aqueous solution containing 10 % (w/v) skimmed milk and 4 % (w/v) sodium glutamate, C4: Aqueous solution containing 4 % (w/v) sucrose, 6 % (w/v) skimmed milk, and 4 % (w/v) sodium glutamate] and three methods of preservation (P1: -86 °C freezing, P2: -196 °C liquid nitrogen freezing, and P3: storing at 4 °C after lyophilization) on the cell viability of three potentially probiotic strains over 12 months. Pediococcus sp P15 and Weissella cibaria ml6 had the highest viability under treatments C3 and C2, after 12 months of storage, respectively. Meanwhile, Lactococcus lactis ml3 demonstrated the highest viability in both treatments C2 and C4 (P ≤ 0.05). According to the results freezing, either P1 or P2, is the most effective preservation method for P. sp P15 and W. cibaria ml6. Meanwhile, L. lactis ml3 showed the highest colony count under treatment (P1) after 12 months of storage (P ≤ 0.05). Among the tested conditions, P. sp P15 and L. lactis ml3 exhibited the highest viability and bile salt resistance when stored under P1C1. For W. cibaria ml6, the optimal storage condition was P2C2 (frozen in liquid nitrogen with cryoprotectant C2).

2.
Front Microbiol ; 14: 1132760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234543

RESUMEN

The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.

3.
PLoS One ; 15(6): e0234958, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32574185

RESUMEN

Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/ß sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10-3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10-3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.


Asunto(s)
Bacillales/enzimología , Proteínas Bacterianas/química , Péptido Hidrolasas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Clonación Molecular , Pruebas de Enzimas , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Peso Molecular , Péptido Hidrolasas/aislamiento & purificación , Péptido Hidrolasas/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato
4.
Iran J Biotechnol ; 15(2): 111-119, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29845058

RESUMEN

Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

5.
J Gen Appl Microbiol ; 60(6): 215-21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25742971

RESUMEN

The objective of the present study was to isolate, identify and characterize new LAB strains with high probiotic potentials from Iranian (Isfahan) indigenous chickens. From 90 isolated LABs, 11 isolates had high growth rate under different stress conditions, including acid (pH 2.5), bile (0.5% oxgall), salt (6-15%) and temperatures 15 and 45°C, and their aggregation time was less than 120 min. Based on the molecular identification using 16S rDNA sequencing and phylogenetic analysis, the isolates belonged to two Lactobacillus salivarius and L. reuteri species. The isolates showed different tolerance to 16 clinically and veterinary relevant antibiotics, and most of them were resistant to or semi-tolerant of 7-15 different studied antibiotics. The Es11, Es12, Es3 and Es13 strains with resistance to or semi-tolerance of 15, 14 and 13 different antibiotics, respectively, were the most tolerant strains. The selected isolates showed a wide range of antimicrobial activity against 7 different pathogenic strains. All the isolates exhibited antagonistic activity against E. coli, Enterococcus hirae, Salmonella enterica and Staphylococcus aureus. The isolates Es6 and Es11 with high antagonistic activity and resistance against 6 of the studied pathogens were the most powerful antagonistic isolates. The values and types of adhesion to the Caco-2 cell cultures were significantly different (0-40 bacteria/Caco-2 cell), and the maximum adhesion was observed for the isolates Es6 and Es13 with 35 and 40 bacteria adhesion/cell, respectively. Finally, based on all the experiments, 7 strains, including Es1, Es6, Es7, Es11, Es12 and Es13, were selected for the further in vivo assays and possible use in the poultry industry.


Asunto(s)
Pollos/microbiología , Lactobacillus/aislamiento & purificación , Lactobacillus/fisiología , Probióticos/aislamiento & purificación , Estrés Fisiológico , Ácidos/toxicidad , Animales , Antibiosis , Adhesión Bacteriana , Células CACO-2 , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Detergentes/toxicidad , Células Epiteliales/microbiología , Calor , Humanos , Irán , Lactobacillus/clasificación , Lactobacillus/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Sales (Química)/toxicidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...