Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 2(8): 1935-48, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22957194

RESUMEN

Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.

2.
Nucleic Acids Res ; 34(Web Server issue): W588-90, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16845076

RESUMEN

Exact localization of the translation initiation sites (TIS) in prokaryotic genomes is difficult to achieve using conventional gene finders. We recently introduced the program TICO for postprocessing TIS predictions based on a completely unsupervised learning algorithm. The program can be utilized through our web interface at http://tico.gobics.de/ and it is also freely available as a commandline version for Linux and Windows. The latest version of our program provides a tool for visualization of the resulting TIS model. Although the underlying method is not based on any specific assumptions about characteristic sequence features of prokaryotic TIS the prediction rates of our tool are competitive on experimentally verified test data.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Iniciación de la Cadena Peptídica Traduccional , Programas Informáticos , Algoritmos , Gráficos por Computador , Internet , Células Procariotas/metabolismo , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...