Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38927622

RESUMEN

BACKGROUND: Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS: Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS: The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA: Attached.


Asunto(s)
Redes Reguladoras de Genes , Plasmodium falciparum , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Malaria Falciparum/genética , Humanos , Ontología de Genes , Anotación de Secuencia Molecular/métodos , Proteínas Protozoarias/genética
2.
BMC Med Genomics ; 15(1): 56, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287663

RESUMEN

BACKGROUND: Clinical use of genotype data requires high positive predictive value (PPV) and thorough understanding of the genotyping platform characteristics. BeadChip arrays, such as the Global Screening Array (GSA), potentially offer a high-throughput, low-cost clinical screen for known variants. We hypothesize that quality assessment and comparison to whole-genome sequence and benchmark data establish the analytical validity of GSA genotyping. METHODS: To test this hypothesis, we selected 263 samples from Coriell, generated GSA genotypes in triplicate, generated whole genome sequence (rWGS) genotypes, assessed the quality of each set of genotypes, and compared each set of genotypes to each other and to the 1000 Genomes Phase 3 (1KG) genotypes, a performance benchmark. For 59 genes (MAP59), we also performed theoretical and empirical evaluation of variants deemed medically actionable predispositions. RESULTS: Quality analyses detected sample contamination and increased assay failure along the chip margins. Comparison to benchmark data demonstrated that > 82% of the GSA assays had a PPV of 1. GSA assays targeting transitions, genomic regions of high complexity, and common variants performed better than those targeting transversions, regions of low complexity, and rare variants. Comparison of GSA data to rWGS and 1KG data showed > 99% performance across all measured parameters. Consistent with predictions from prior studies, the GSA detection of variation within the MAP59 genes was 3/261. CONCLUSION: We establish the analytical validity of GSA assays using quality analytics and comparison to benchmark and rWGS data. GSA assays meet the standards of a clinical screen although assays interrogating rare variants, transversions, and variants within low-complexity regions require careful evaluation.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma , Genotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...