Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400265, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007274

RESUMEN

Hydrogel-based injectable drug delivery systems provide temporally and spatially controlled drug release with reduced adverse effects on healthy tissues. Therefore, they represent a promising therapeutic option for unresectable solid tumor entities. In this study, a peptide-starPEG/hyaluronic acid-based physical hydrogel is modified with ferrocene to provide a programmable drug release orchestrated by matrix-drug interaction and local reactive oxygen species (ROS). The injectable ROS-responsive hydrogel (hiROSponse) exhibits adequate biocompatibility and biodegradability, which are important for clinical applications. HiROSponse is loaded with the two cytostatic drugs (hiROSponsedox/ptx) doxorubicin (dox) and paclitaxel (ptx). Dox is a hydrophilic compound and its release is mainly controlled by Fickian diffusion, while the hydrophobic interactions between ptx and ferrocene can control its release and thus be regulated by the oxidation of ferrocene to the more hydrophilic state of ferrocenium. In a syngeneic malignant melanoma-bearing mouse model, hiROSponsedox/ptx slows tumor growth without causing adverse side effects and doubles the relative survival probability. Programmable release is further demonstrated in a tumor model with a low physiological ROS level, where dox release, low dose local irradiation, and the resulting ROS-triggered ptx release lead to tumor growth inhibition and increased survival.

3.
EJNMMI Radiopharm Chem ; 9(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165538

RESUMEN

BACKGROUND: Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS: An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION: [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.

4.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37982850

RESUMEN

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Glicina/análogos & derivados , Piridinas , Humanos , Ratones , Ratas , Animales , Isocitrato Deshidrogenasa/genética , Glioma/genética , Tomografía de Emisión de Positrones/métodos , Neoplasias Encefálicas/genética
5.
Biotechnol J ; 18(11): e2200625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37448316

RESUMEN

Due to their ability to catalytically cleave proteins and peptides, proteases present unique opportunities for the use in industrial, biotechnological, and therapeutic applications. Engineered proteases with redesigned substrate specificities have the potential to expand the scope of practical applications of this enzyme class. We here apply a combinatorial protease engineering-based screening method that links proteolytic activity to the solubility and correct folding of a fluorescent reporter protein to redesign the substrate specificity of tobacco etch virus (TEV) protease. The target substrate EKLVFQA differs at three out of seven positions from the TEV consensus substrate sequence. Flow cytometric sorting of a semi-rational TEV protease library, consisting of focused mutations of the substrate binding pockets as well as random mutations throughout the enzyme, led to the enrichment of a set of protease variants that recognize and cleave the novel target substrate.


Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Especificidad por Sustrato , Endopeptidasas/genética , Péptido Hidrolasas/genética , Proteolisis
6.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230845

RESUMEN

Overexpression of the neurotensin receptor type 1 (NTS1R), a peptide receptor located at the plasma membrane, has been reported for a variety of malignant tumors. Thus, targeting the NTS1R with 18F- or 68Ga-labeled ligands is considered a straightforward approach towards in vivo imaging of NTS1R-expressing tumors via positron emission tomography (PET). The development of suitable peptidic NTS1R PET ligands derived from neurotensin is challenging due to proteolytic degradation. In this study, we prepared a series of NTS1R PET ligands based on the C-terminal fragment of neurotensin (NT(8-13), Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) by attachment of the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via an Nω-carbamoylated arginine side chain. Insertion of Ga3+ in the DOTA chelator gave potential PET ligands that were evaluated concerning NTS1R affinity (range of Ki values: 1.2-21 nM) and plasma stability. Four candidates were labeled with 68Ga3+ and used for biodistribution studies in HT-29 tumor-bearing mice. [68Ga]UR-LS130 ([68Ga]56), containing an N-terminal methyl group and a ß,ß-dimethylated tyrosine instead of Tyr11, showed the highest in vivo stability and afforded a tumor-to-muscle ratio of 16 at 45 min p.i. Likewise, dynamic PET scans enabled a clear tumor visualization. The accumulation of [68Ga]56 in the tumor was NTS1R-mediated, as proven by blocking studies.

7.
Biomaterials ; 269: 120637, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450583

RESUMEN

Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature desired application-related functions, like tunable degradability, injectability, or controlled release of bioactive molecules. Herein, a non-covalently assembled, injectable hydrogel system based on oligopeptides interacting with sulphated polysaccharides is reported, showing high tolerability and biocompatibility in immunocompetent hairless mice. Altering the peptide or polysaccharide component considerably varies the in vivo degradation rate of the hydrogels, ranging from a half-life of three weeks to no detectable degradation after three months. The hydrogel with sulphated low molecular weight hyaluronic acid exhibits sustained degradation-mediated release of heparin-binding molecules in vivo, as shown by small animal magnetic resonance imaging and fluorescence imaging, and enhances the expression of vascular endothelial growth factor in hydrogel surrounding. In vitro investigations indicate that M2-macrophages could be responsible for the moderate difference in pro-angiogenic effects. The ECM-mimetic and injectable hydrogels represent tunable bioactive scaffolds for tissue engineering, also enabling controlled release of heparin-binding signalling molecules including many growth factors.


Asunto(s)
Hidrogeles , Factor A de Crecimiento Endotelial Vascular , Animales , Materiales Biocompatibles , Preparaciones de Acción Retardada , Ratones , Ingeniería de Tejidos
8.
ACS Chem Neurosci ; 11(10): 1447-1457, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32315153

RESUMEN

Deposition of fibrillar amyloid ß (Aß) in senile plaques is a pathological signature of Alzheimer's disease. However, senile plaques also contain many other components, including a range of different proteins. Although the composition of the plaques can be analyzed in post-mortem tissue, knowledge of the molecular details of these multiprotein inclusions and their assembly processes is limited, which impedes the progress in deciphering the biochemical mechanisms associated with Aß pathology. We describe here a bottom-up approach to monitor how proteins from human cerebrospinal fluid associate with Aß amyloid fibrils to form plaque particles. The method combines flow cytometry and mass spectrometry proteomics and allowed us to identify and quantify 128 components of the captured multiprotein aggregates. The results provide insights into the functional characteristics of the sequestered proteins and reveal distinct interactome responses for the two investigated Aß variants, Aß(1-40) and Aß(1-42). Furthermore, the quantitative data is used to build models of the structural organization of the multiprotein aggregates, which suggests that Aß is not the primary binding target for all the proteins; secondary interactions account for the majority of the assembled components. The study elucidates how different proteins are recruited into senile plaques and establishes a new model system for exploring the pathological mechanisms of Alzheimer's disease from a molecular perspective.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Amiloide , Péptidos beta-Amiloides , Humanos , Placa Amiloide
9.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340383

RESUMEN

The use of biotherapeutics for the treatment of diseases of the central nervous system (CNS) is typically impeded by insufficient transport across the blood-brain barrier. Here, we investigate a strategy to potentially increase the uptake into the CNS of an affibody molecule (ZSYM73) via binding to the transferrin receptor (TfR). ZSYM73 binds monomeric amyloid beta, a peptide involved in Alzheimer's disease pathogenesis, with subnanomolar affinity. We generated a tri-specific fusion protein by genetically linking a single-chain variable fragment of the TfR-binding antibody 8D3 and an albumin-binding domain to the affibody molecule ZSYM73. Simultaneous tri-specific target engagement was confirmed in a biosensor experiment and the affinity for murine TfR was determined to 5 nM. Blockable binding to TfR on endothelial cells was demonstrated using flow cytometry and in a preclinical study we observed increased uptake of the tri-specific fusion protein into the cerebrospinal fluid 24 h after injection.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Transporte Biológico , Diseño de Fármacos , Citometría de Flujo , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Permeabilidad , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Relación Estructura-Actividad
10.
Small ; 16(7): e1905013, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31880080

RESUMEN

Active tumor targeting involves the decoration of nanomaterials (NMs) with oncotropic vector biomolecules that selectively recognize certain antigens on malignant cells or in the tumor microenvironment. This strategy can facilitate intracellular uptake of NM through specific interactions such as receptor-mediated endocytosis and can lead to prolonged retention in the malignant tissues by preventing rapid efflux from the tumor. Here, the design of actively targeting, renally excretible bimodal dendritic polyglycerols (dPGs) for diagnostic cancer imaging is described. Single-domain antibodies (sdAbs) specifically binding to the epidermal growth factor receptor (EGFR) are employed herein as targeting warheads owing to their small size and high affinity for their corresponding antigen. The dPGs equipped with EGFR-targeting feature are compared head-to-head with their nontargeting counterparts in terms of interaction with EGFR-overexpressing cells in vitro as well as accumulation at receptor-positive tumors in vivo. Experimental results reveal a higher specificity and preferential tumor accumulation for the α-EGFR dPGs, resulting from the introduction of active targeting capabilities on their backbone. These results highlight the potential for improving the tumor uptake properties of dPGs by strategic use of sdAb functionalization, which can ultimately prove useful to the development of ultrasmall NM with highly specific tumor accumulation.


Asunto(s)
Técnicas y Procedimientos Diagnósticos , Glicerol , Neoplasias , Polímeros , Anticuerpos de Dominio Único , Endocitosis , Receptores ErbB/metabolismo , Glicerol/análisis , Células Hep G2 , Humanos , Nanoestructuras , Neoplasias/diagnóstico por imagen , Polímeros/análisis , Unión Proteica , Anticuerpos de Dominio Único/metabolismo , Microambiente Tumoral
11.
Biol Chem ; 400(3): 405-415, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30521472

RESUMEN

Proteases are crucial for regulating biological processes in organisms through hydrolysis of peptide bonds. Recombinant proteases have moreover become important tools in biotechnological, and biomedical research and as therapeutics. We have developed a label-free high-throughput method for quantitative assessment of proteolytic activity in Escherichia coli. The screening method is based on co-expression of a protease of interest and a reporter complex. This reporter consists of an aggregation-prone peptide fused to a fluorescent protein via a linker that contains the corresponding substrate sequence. Cleavage of the substrate rescues the fluorescent protein from aggregation, resulting in increased fluorescence that correlates to proteolytic activity, which can be monitored using flow cytometry. In one round of flow-cytometric cell sorting, we isolated an efficiently cleaved tobacco etch virus (TEV) substrate from a 1:100 000 background of non-cleavable sequences, with around 6000-fold enrichment. We then engineered the 3C protease from coxsackievirus B3 (CVB3 3Cpro) towards improved proteolytic activity on the substrate LEVLFQ↓GP. We isolated highly proteolytic active variants from a randomly mutated CVB3 3Cpro library with up to 4-fold increase in activity. The method enables simultaneous measurement of proteolytic activity and protease expression levels and can therefore be applied for protease substrate profiling, as well as directed evolution of proteases.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enterovirus/enzimología , Citometría de Flujo , Fluorescencia , Proteínas Virales/metabolismo , Proteasas Virales 3C , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Ingeniería de Proteínas
12.
Molecules ; 23(2)2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29462967

RESUMEN

Experimental evidence has associated receptor tyrosine kinase EphB4 with tumor angiogenesis also in malignant melanoma. Considering the limited in vivo data available, we have conducted a systematic multitracer and multimodal imaging investigation in EphB4-overexpressing and mock-transfected A375 melanoma xenografts. Tumor growth, perfusion, and hypoxia were investigated by positron emission tomography. Vascularization was investigated by fluorescence imaging in vivo and ex vivo. The approach was completed by magnetic resonance imaging, radioluminography ex vivo, and immunohistochemical staining for blood and lymph vessel markers. Results revealed EphB4 to be a positive regulator of A375 melanoma growth, but a negative regulator of tumor vascularization. Resulting in increased hypoxia, this physiological characteristic is considered as highly unfavorable for melanoma prognosis and therapy outcome. Lymphangiogenesis, by contrast, was not influenced by EphB4 overexpression. In order to distinguish between EphB4 forward and EphrinB2, the natural EphB4 ligand, reverse signaling a specific EphB4 kinase inhibitor was applied. Blocking experiments show EphrinB2 reverse signaling rather than EphB4 forward signaling to be responsible for the observed effects. In conclusion, functional expression of EphB4 is considered a promising differentiating characteristic, preferentially determined by non-invasive in vivo imaging, which may improve personalized theranostics of malignant melanoma.


Asunto(s)
Imagenología Tridimensional , Melanoma/metabolismo , Melanoma/patología , Receptor EphB4/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanoma/irrigación sanguínea , Melanoma/diagnóstico por imagen , Ratones Desnudos , Perfusión , Tomografía de Emisión de Positrones , Transducción de Señal , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/diagnóstico por imagen , Melanoma Cutáneo Maligno
13.
BMC Cancer ; 17(1): 790, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29169339

RESUMEN

BACKGROUND: Novel theranostic options for high-risk non-muscle invasive bladder cancer are urgently needed. This requires a thorough evaluation of experimental approaches in animal models best possibly reflecting human disease before entering clinical studies. Although several bladder cancer xenograft models were used in the literature, the establishment of an orthotopic bladder cancer model in mice remains challenging. METHODS: Luciferase-transduced UM-UC-3LUCK1 bladder cancer cells were instilled transurethrally via 24G permanent venous catheters into athymic NMRI and BALB/c nude mice as well as into SCID-beige mice. Besides the mouse strain, the pretreatment of the bladder wall (trypsin or poly-L-lysine), tumor cell count (0.5 × 106-5.0 × 106) and tumor cell dwell time in the murine bladder (30 min - 2 h) were varied. Tumors were morphologically and functionally visualized using bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and positron emission tomography (PET). RESULTS: Immunodeficiency of the mouse strains was the most important factor influencing cancer cell engraftment, whereas modifying cell count and instillation time allowed fine-tuning of the BLI signal start and duration - both representing the possible treatment period for the evaluation of new therapeutics. Best orthotopic tumor growth was achieved by transurethral instillation of 1.0 × 106 UM-UC-3LUCK1 bladder cancer cells into SCID-beige mice for 2 h after bladder pretreatment with poly-L-lysine. A pilot PET experiment using 68Ga-cetuximab as transurethrally administered radiotracer revealed functional expression of epidermal growth factor receptor as representative molecular characteristic of engrafted cancer cells in the bladder. CONCLUSIONS: With the optimized protocol in SCID-beige mice an applicable and reliable model of high-risk non-muscle invasive bladder cancer for the development of novel theranostic approaches was established.


Asunto(s)
Modelos Animales de Enfermedad , Xenoinjertos , Neoplasias de la Vejiga Urinaria/patología , Animales , Recuento de Células , Línea Celular Tumoral , Expresión Génica , Genes Reporteros , Humanos , Imagen por Resonancia Magnética , Ratones , Imagen Molecular , Invasividad Neoplásica , Tomografía de Emisión de Positrones , Carga Tumoral , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/terapia
14.
Biotechnol J ; 12(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27860405

RESUMEN

Aggregation of misfolded peptides and proteins is a key event in several neurodegenerative diseases. Suggested treatments of such disorders aim to inhibit the initial aggregation process. Here, we have developed an intracellular, function-based screening method, intended for isolation of aggregation-inhibitors from combinatorial protein libraries by flow-cytometric cell sorting. The method is based on fusion of aggregation-prone peptides to a fluorescent protein, functioning as a solubility reporter. Co-expression of a protein-based aggregation-inhibitor should prevent aggregation and thus increase the whole-cell fluorescence. We evaluated the method using the aggregation-prone Alzheimer's-related amyloid-ß (Aß) peptide in fusion to green-fluorescent protein (GFP), and an Aß aggregation-inhibiting Affibody molecule. To adapt the method for library applications, the inhibitor was linked to an mCherry reporter for normalization of protein expression levels. We found that aggregation propensity correlates with fluorescence intensity, as co-expression of the Affibody-inhibitor increased the whole-cell fluorescence relative to a non-inhibitor. Employing improved cultivation parameters, we furthermore demonstrated efficient rescue from aggregation of an α-synuclein-derived protein using a different type of aggregation-inhibitor. Importantly, we also showed that the Aß aggregation-inhibiting Affibody molecule could be isolated from a 1:10,000 background of non-inhibitors, with around 3,500-fold enrichment, in one cycle of fluorescence-based cell sorting. In conclusion, our new method represents a promising approach for generation of novel protein-based aggregation-inhibitors.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Citometría de Flujo/métodos , Vectores Genéticos , Proteínas Recombinantes/farmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Escherichia coli/genética , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
15.
Biochem Biophys Res Commun ; 458(1): 40-5, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25637530

RESUMEN

This study aimed at in vivo visualization of cyclooxygenase-2 (COX-2) by optical imaging using a representative compound of a class of autofluorescent 2,3-diaryl-substituted indole-based selective COX-2 inhibitors (2,3-diaryl-indole coxibs). COX-2 was successfully visualized in mice models with phorbol myristate ester (TPA)-induced inflammation or bearing xenografted human melanoma cells by 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1). COX-2 protein expression in both TPA-induced inflammatory sites and human melanoma xenografts was confirmed by immunoblotting. Control experiments using surrogate markers, sham injections, and non-COX-2 expressing melanoma cells further confirmed specificity of tissue association of C1. The merging of therapeutic and diagnostic properties of 2,3-diaryl-indole coxibs may widen the range of applications of COX-2-targeted treatment, e.g., for in situ-guided surgery and ex vivo diagnostics.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Ciclooxigenasa 2/análisis , Indoles/metabolismo , Imagen Óptica/métodos , Sulfonamidas/metabolismo , Animales , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/metabolismo , Femenino , Xenoinjertos , Humanos , Indoles/análisis , Indoles/química , Melanoma/enzimología , Melanoma/patología , Ratones Endogámicos , Sondas Moleculares/análisis , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sulfonamidas/análisis , Sulfonamidas/química , Acetato de Tetradecanoilforbol/farmacología
16.
J Magn Reson Imaging ; 31(3): 747-52, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20187223

RESUMEN

PURPOSE: To allow for reproducible rodent positioning using molding in multimodal tomographic imaging (positron emission tomography [PET], magnetic resonance imaging/spectroscopy [MRI/MRS]), minimization of magnetic field inhomogeneity during MRI investigations of peripheral structures, and reproducible positioning for subsequent histological sectioning of the separated tumor. MATERIALS AND METHODS: Chemical shift imaging (CSI) studies were carried out using phantoms and NMRI nu/nu mice bearing subcutaneous tumors. For embedding, three different materials were used: 1) alginate, 2) gelatin, and 3) a mixture of wheat flour and salt. The animals were placed in an animal chamber including position markers visible by MRI and PET. The frozen embedded explanted tumors were sliced and examined autoradiographically as well as histologically. RESULTS: Alginate showed a substantial improvement of magnetic field homogeneity and histological sectioning was superior to the other methods. This embedding led to a significant reduction of the full width at half maximum (FWHM) of the water peak in the peripheral rim of the tumor in comparison to the same peak FWHM without embedding (41 +/- 10 Hz vs. 80 +/- 20 Hz). CONCLUSION: Our research shows that animal positioning in an imaging chamber together with alginate embedding allows high-quality multimodality investigations including coregistration of MRI/MRS, PET, and histological images.


Asunto(s)
Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Alginatos , Biomarcadores de Tumor/análisis , Técnicas de Cultivo de Célula/métodos , Modelos Animales de Enfermedad , Técnica de Sustracción , Animales , Femenino , Ácido Glucurónico , Células HT29 , Ácidos Hexurónicos , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Desnudos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...