Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427484

RESUMEN

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Receptores de Superficie Celular , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Microglía/metabolismo , Fagocitosis , Receptores de Superficie Celular/metabolismo
2.
Toxicol Sci ; 193(2): 175-191, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37074955

RESUMEN

Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-ß pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-ß buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Material Particulado/toxicidad , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Trastornos de la Memoria/inducido químicamente , Ratones Transgénicos
3.
Acta Neuropathol Commun ; 11(1): 31, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855152

RESUMEN

Microglia are brain-resident myeloid cells and play a major role in the innate immune responses of the CNS and the pathogenesis of Alzheimer's disease (AD). However, the contribution of nonparenchymal or brain-infiltrated myeloid cells to disease progression remains to be demonstrated. Here, we show that monocyte-derived cells (MDC) invade brain parenchyma in advanced stages of AD continuum using transcriptional analysis and immunohistochemical characterization in post-mortem human hippocampus. Our findings demonstrated that a high proportion (60%) of demented Braak V-VI individuals was associated with up-regulation of genes rarely expressed by microglial cells and abundant in monocytes, among which stands the membrane-bound scavenger receptor for haptoglobin/hemoglobin complexes or Cd163. These Cd163-positive MDC invaded the hippocampal parenchyma, acquired a microglial-like morphology, and were located in close proximity to blood vessels. Moreover, and most interesting, these invading monocytes infiltrated the nearby amyloid plaques contributing to plaque-associated myeloid cell heterogeneity. However, in aged-matched control individuals with hippocampal amyloid pathology, no signs of MDC brain infiltration or plaque invasion were found. The previously reported microglial degeneration/dysfunction in AD hippocampus could be a key pathological factor inducing MDC recruitment. Our data suggest a clear association between MDC infiltration and endothelial activation which in turn may contribute to damage of the blood brain barrier integrity. The recruitment of monocytes could be a consequence rather than the cause of the severity of the disease. Whether monocyte infiltration is beneficial or detrimental to AD pathology remains to be fully elucidated. These findings open the opportunity to design targeted therapies, not only for microglia but also for the peripheral immune cell population to modulate amyloid pathology and provide a better understanding of the immunological mechanisms underlying the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Monocitos , Humanos , Anciano , Placa Amiloide , Encéfalo , Hipocampo , Proteínas Amiloidogénicas
4.
Clin Exp Pharmacol Physiol ; 50(3): 228-237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36398458

RESUMEN

Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Here, we report that chronic ARB treatment with olmesartan (10 mg/kg/day by oral gavage for 6 weeks) partially but significantly ameliorated accumulation of oxidized and ubiquitinated proteins, astrogliosis and transformation to neurotoxic astrocytes in the brain of old OLETF rats, which otherwise exhibit the progression of these pathological hallmarks associated with MetS. Additionally, olmesartan treatment restored claudin-5 and ZO-1, markers of the structural integrity of the blood-brain barrier as well as synaptic protein PSD-95, which were otherwise decreased in old OLETF rats, particularly in the hippocampus, a critical region in cognition, memory and AD. These data demonstrate that the progression of MetS in OLETF rats is associated with deterioration of various aspects of neuronal integrity that may manifest neurodegenerative conditions and that overactivation of angiotensin receptor directly or indirectly contributes to these detriments. Thus, olmesartan treatment may slow or delay the onset of degenerative process in the brain and subsequent neurological disorders associated with MetS.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Ratas , Animales , Ratas Endogámicas OLETF , Antagonistas de Receptores de Angiotensina , Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas Long-Evans , Síndrome Metabólico/metabolismo , Encéfalo/metabolismo , Glucemia/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628216

RESUMEN

Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide
6.
Front Neurosci ; 15: 752594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803589

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.

7.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962164

RESUMEN

Extracellular amyloid-beta deposition and intraneuronal Tau-laden neurofibrillary tangles are prime features of Alzheimer's disease (AD). The pathology of AD is very complex and still not fully understood, since different neural cell types are involved in the disease. Although neuronal function is clearly deteriorated in AD patients, recently, an increasing number of evidences have pointed towards glial cell dysfunction as one of the main causative phenomena implicated in AD pathogenesis. The complex disease pathology together with the lack of reliable disease models have precluded the development of effective therapies able to counteract disease progression. The discovery and implementation of human pluripotent stem cell technology represents an important opportunity in this field, as this system allows the generation of patient-derived cells to be used for disease modeling and therapeutic target identification and as a platform to be employed in drug discovery programs. In this review, we discuss the current studies using human pluripotent stem cells focused on AD, providing convincing evidences that this system is an excellent opportunity to advance in the comprehension of AD pathology, which will be translated to the development of the still missing effective therapies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Técnicas de Cultivo de Célula/métodos , Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Microglía/patología , Células-Madre Neurales/metabolismo , Organoides/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Oligodendroglía/metabolismo , Proteínas tau/metabolismo
8.
Brain Pathol ; 30(2): 345-363, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31491047

RESUMEN

Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V-VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.


Asunto(s)
Enfermedad de Alzheimer/patología , Neuronas GABAérgicas/patología , Interneuronas/patología , Corteza Perirrinal/patología , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...