Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632359

RESUMEN

Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly(ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.

2.
Cell Rep ; 43(3): 113891, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427561

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Ribosómico/metabolismo , COVID-19/metabolismo , Ribosomas/metabolismo , Proteínas Virales/metabolismo , Proteínas no Estructurales Virales/metabolismo
3.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37697435

RESUMEN

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Inestabilidad Genómica , Recurrencia Local de Neoplasia , Estructuras R-Loop , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36928661

RESUMEN

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Asunto(s)
Proteína BRCA1 , Replicación del ADN , Síndrome de Cáncer de Mama y Ovario Hereditario , Mutación , Transcripción Genética , Humanos , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Replicación del ADN/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Síndrome de Cáncer de Mama y Ovario Hereditario/fisiopatología , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Regiones Promotoras Genéticas , Metiltransferasas/deficiencia , Metiltransferasas/genética , Estructuras R-Loop , Muerte Celular
5.
STAR Protoc ; 3(4): 101734, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36178790

RESUMEN

Modulating R-loop triplex nucleic acid structures reveals their roles across the genome. However, common approaches cannot ascribe functions to R-loops in a locus-associated manner. This protocol presents the use of a locus-associated R-loop-modulating system (dubbed LasR), which employs an inducible RNaseH1-EGFP-dCas9 chimaera. We detail the in silico design of sgRNAs and their transfection with the chimaera, and outline steps confirming RNaseH1-EGFP-dCas9 expression, localization, locus-targeted association, and R-loop modulation in cis or trans using immunoblotting, microscopy, and chromatin and DNA-RNA immunoprecipitation. For complete details on the use and execution of this protocol, please refer to Abraham et al. (2020).


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estructuras R-Loop , ARN/genética , ADN/metabolismo , Genoma
6.
Nat Commun ; 13(1): 5453, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114190

RESUMEN

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


Asunto(s)
ARN Polimerasa II , Proteínas del Complejo SMN , Humanos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , ARN Polimerasa II/efectos de los fármacos , ARN Polimerasa II/metabolismo , Proteínas del Complejo SMN/antagonistas & inhibidores , Proteínas del Complejo SMN/efectos de los fármacos , Proteínas del Complejo SMN/metabolismo
7.
Trends Genet ; 38(3): 290-304, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34598804

RESUMEN

The maintenance of genome stability and cellular homeostasis depends on the temporal and spatial coordination of successive events constituting the classical DNA damage response (DDR). Recent findings suggest close integration and coordination of DDR signaling with specific cellular processes. The mechanisms underlying such coordination remain unclear. We review emerging crosstalk between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, cytoskeletal forces, and liquid-liquid phase separation (LLPS) in mediating DNA repair. We present an overarching DNA repair framework within which these dynamic processes intersect in nuclear space over time. Collectively, this interplay ensures the efficient assembly of DNA repair proteins onto shifting genome structures to preserve genome stability and cell survival.


Asunto(s)
Cromatina , Reparación del ADN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Daño del ADN/genética , Reparación del ADN/genética
8.
Trends Cell Biol ; 31(9): 721-731, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33902985

RESUMEN

Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.


Asunto(s)
Núcleo Celular , Microtúbulos , Citoesqueleto , Interfase , Membrana Nuclear
9.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529165

RESUMEN

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , ADN de Neoplasias/metabolismo , Inestabilidad Genómica , Neoplasias Mamarias Animales/metabolismo , Neoplasias Ováricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN de Neoplasias/genética , Femenino , Sitios Genéticos , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/genética
10.
Commun Biol ; 3(1): 773, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319830

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a central player in the assembly of membraneless compartments termed biomolecular condensates. These compartments are dynamic structures that can condense or dissolve under specific conditions to regulate molecular functions. Such properties allow biomolecular condensates to rapidly respond to changing endogenous or environmental conditions. Here, we review emerging roles for LLPS within the nuclear space, with a specific emphasis on genome organization, expression and repair. Our review highlights the emerging notion that biomolecular condensates regulate the sequential engagement of molecules in multistep biological processes.


Asunto(s)
Núcleo Celular/metabolismo , Fenómenos Fisiológicos Celulares , Fraccionamiento Celular , Fraccionamiento Químico , Reparación del ADN , Células Eucariotas/fisiología , Regulación de la Expresión Génica , Genoma , Genómica/métodos , Heterocromatina/genética , Heterocromatina/metabolismo , Fracciones Subcelulares
11.
Sci Rep ; 10(1): 16034, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994470

RESUMEN

Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA-DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA-DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA-DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA-DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA-DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA-DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA-DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.


Asunto(s)
Estructuras R-Loop/genética , Retroelementos/genética , Retroelementos/fisiología , ADN Complementario/genética , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , ARN/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/genética , Ribonucleasa H/metabolismo , Ribonucleasa H/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nature ; 585(7824): 298-302, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669707

RESUMEN

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , ARN no Traducido/genética , Ribosomas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Nucléolo Celular/fisiología , ADN Helicasas/metabolismo , ADN Intergénico/genética , Humanos , Enzimas Multifuncionales/metabolismo , Biosíntesis de Proteínas , Estructuras R-Loop , ARN Helicasas/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Ribonucleasa H/metabolismo , Ribosomas/química , Ribosomas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
13.
Nat Commun ; 11(1): 695, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019927

RESUMEN

Cellular processes are influenced by liquid phase separation, but its role in DNA repair is unclear. Here, we show that in Saccharomyces cerevisiae, liquid droplets made up of DNA repair proteins cooperate with different types of DNA damage-inducible intranuclear microtubule filaments (DIMs) to promote the clustering of DNA damage sites and maintain genome stability. Rad52 DNA repair proteins at different DNA damage sites assemble in liquid droplets that fuse into a repair centre droplet via the action of petite DIMs (pti-DIMs). This larger droplet concentrates tubulin and projects short aster-like DIMs (aster-DIMs), which tether the repair centre to longer DIMs mediating the mobilization of damaged DNA to the nuclear periphery for repair. Our findings indicate that cooperation between Rad52 liquid droplets and various types of nuclear filaments promotes the assembly and function of the DNA repair centre.


Asunto(s)
Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , ADN de Hongos/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Trends Cell Biol ; 30(2): 144-156, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31836279

RESUMEN

The increased mobility of damaged DNA within the nucleus can promote genome stability and cell survival. New cell biology approaches have indicated that damaged DNA mobility exhibits random and directed movements during DNA repair. Here, we review recent studies that collectively reveal that cooperation between different molecular mechanisms, which underlie increases in the random and directional motion of damaged DNA, can promote genome repair. We also review the latest approaches that can be used to distinguish between random and directed motions of damaged DNA or other biological molecules. Detailed understanding of the mechanisms behind the increased motion of damaged DNA within the nucleus will reveal more of the secrets of genome organization and stability while potentially pointing to novel research and therapeutic tools.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Movimiento (Física) , Ensamble y Desensamble de Cromatina , Humanos , Microtúbulos/metabolismo
15.
Trends Genet ; 35(8): 589-600, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31155151

RESUMEN

Genome expression and stability are dependent on biological processes that control repetitive DNA sequences and nuclear compartmentalization. The phase separation of macromolecules has recently emerged as a major player in the control of biological pathways. Here, we summarize recent studies that collectively reveal intersections between phase separation, repetitive DNA elements, and nuclear compartments. These intersections modulate fundamental processes, including gene expression, DNA repair, and cellular lifespan, in the context of health and diseases such as cancer and neurodegeneration.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Envejecimiento/genética , Compartimento Celular/genética , Reparación del ADN/genética , Sitios Genéticos/genética , Humanos
16.
Front Cell Dev Biol ; 7: 336, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921848

RESUMEN

Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.

17.
Commun Biol ; 1: 187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417124

RESUMEN

Ribosomal DNA (rDNA) repeat instability and protein aggregation are thought to be two major and independent drivers of cellular aging. Pbp1, the yeast ortholog of human ATXN2, maintains rDNA repeat stability and lifespan via suppression of RNA-DNA hybrids. ATXN2 polyglutamine expansion drives neurodegeneration causing spinocerebellar ataxia type 2 and promoting amyotrophic lateral sclerosis. Here, molecular characterization of Pbp1 revealed that its knockout or subjection to disease-modeling polyQ expansion represses Ty1 (Transposons of Yeast) retrotransposons by respectively promoting Trf4-depedendent RNA turnover and Ty1 Gag protein aggregation. This aggregation, but not its impact on retrotransposition, compromises rDNA repeat stability and shortens lifespan by hyper-activating Trf4-dependent turnover of intergenic ncRNA within the repeats. We uncover a function for the conserved Pbp1/ATXN2 proteins in the promotion of retrotransposition, create and describe powerful yeast genetic models of ATXN2-linked neurodegenerative diseases, and connect the major aging mechanisms of rDNA instability and protein aggregation.

18.
Nat Commun ; 9(1): 2567, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967403

RESUMEN

Damaged DNA shows increased mobility, which can promote interactions with repair-conducive nuclear pore complexes (NPCs). This apparently random mobility is paradoxically abrogated upon disruption of microtubules or kinesins, factors that typically cooperate to mediate the directional movement of macromolecules. Here, we resolve this paradox by uncovering DNA damage-inducible intranuclear microtubule filaments (DIMs) that mobilize damaged DNA and promote repair. Upon DNA damage, relief of centromeric constraint induces DIMs that cooperate with the Rad9 DNA damage response mediator and Kar3 kinesin motor to capture DNA lesions, which then linearly move along dynamic DIMs. Decreasing and hyper-inducing DIMs respectively abrogates and hyper-activates repair. Accounting for DIM dynamics across cell populations by measuring directional changes of damaged DNA reveals that it exhibits increased non-linear directional behavior in nuclear space. Abrogation of DIM-dependent processes or repair-promoting factors decreases directional behavior. Thus, inducible and dynamic nuclear microtubule filaments directionally mobilize damaged DNA and promote repair.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Reparación del ADN/fisiología , Microtúbulos/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Microscopía Intravital , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Front Genet ; 9: 157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29741164

RESUMEN

[This corrects the article on p. 95 in vol. 9, PMID: 29616083.].

20.
Front Genet ; 9: 95, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616083

RESUMEN

Eukaryotic genomes are non-randomly arranged inside the nucleus. Despite this ordered spatial genome organization, damaged DNA exhibits increased random mobility within nuclear space. This increased random movement is thought to promote DNA repair by facilitating homology search, allowing targeting to repair-conducive nuclear domains, or releasing damage from repair-repressive locations. Recent studies focusing on the relationship between telomeres, DNA repair processes, and nuclear organization have revealed that the disruption of motor proteins or microtubules, which typically mediate the directed motion of cargo, disrupts the random mobility of damaged DNA. These findings define a new biological paradox. Here, I define this as the damaged DNA mobility paradox, describe how it uncovers key gaps in knowledge, and highlight key questions to help guide us toward paradox resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...