Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470227

RESUMEN

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Asunto(s)
Encéfalo , Hidantoínas , Humanos , Oligodendroglía/metabolismo , Diseño de Fármacos , Hidantoínas/metabolismo
2.
PLoS One ; 9(9): e102617, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181470

RESUMEN

α1-Antitrypsin (α1AT) deficiency, the most common serpinopathy, results in both emphysema and liver disease. Over 90% of all clinical cases of α1AT deficiency are caused by the Z variant in which Glu342, located at the top of s5A, is replaced by a Lys which results in polymerization both in vivo and in vitro. The Glu342Lys mutation removes a salt bridge and a hydrogen bond but does not effect the thermodynamic stability of Z α1AT compared to the wild type protein, M α1AT, and so it is unclear why Z α1AT has an increased polymerization propensity. We speculated that the loss of these interactions would make the native state of Z α1AT more dynamic than M α1AT and that this change renders the protein more polymerization prone. We have used hydrogen/deuterium exchange combined with mass spectrometry (HXMS) to determine the structural and dynamic differences between native Z and M α1AT to reveal the molecular basis of Z α1AT polymerization. Our HXMS data shows that the Z mutation significantly perturbs the region around the site of mutation. Strikingly the Z mutation also alters the dynamics of regions distant to the mutation such as the B, D and I helices and specific regions of each ß-sheet. These changes in global dynamics may lead to an increase in the likelihood of Z α1AT sampling a polymerogenic structure thereby causing disease.


Asunto(s)
Mutación/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Secuencia de Aminoácidos , Medición de Intercambio de Deuterio , Humanos , Cinética , Datos de Secuencia Molecular , Electroforesis en Gel de Poliacrilamida Nativa , Péptidos/química , Espectrometría de Masas en Tándem , Factores de Tiempo
3.
Biophys J ; 101(7): 1758-65, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21961602

RESUMEN

Neuroserpin is a regulator of neuronal growth and plasticity. Like other members of the serpin family, neuroserpin undergoes a large conformational change as part of its function. Unlike other serpins such as α(1)-antitrypsin, wild-type neuroserpin will polymerize under near-physiological conditions, and will spontaneously transition to the latent state. To probe the origins of this conformational lability, we have performed hydrogen exchange measurements and molecular-dynamics simulations on human neuroserpin. Hydrogen exchange indicates that neuroserpin has greater flexibility in the breach region and in ß-strand 1C compared with α(1)-antitrypsin. Molecular-dynamics simulations show that the distance between the top of ß-strands 3 and 5A averages 4.6 Å but becomes as large as 7.5 Å in neuroserpin while it remains stable at ∼3.5 Å in α(1)-antitrypsin. Further simulations show that the stabilizing S340A mutation suppresses these fluctuations in neuroserpin. The first principal component calculated from the simulations shows a movement of helix F away from the face of ß-sheet A in neuroserpin while no such movement is evident in α(1)-antitrypsin. The increased mobility of these regions in neuroserpin relative to α(1)-antitrypsin provides a basis for neuroserpin's increased tendency toward the formation of polymers and/or the latent state.


Asunto(s)
Neuropéptidos/química , Multimerización de Proteína , Serpinas/química , Dominio Catalítico , Medición de Intercambio de Deuterio , Humanos , Enlace de Hidrógeno , Espectrometría de Masas , Simulación de Dinámica Molecular , Neuropéptidos/metabolismo , Análisis de Componente Principal , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteolisis , Serpinas/metabolismo , Termodinámica , Neuroserpina
4.
Mol Biol Cell ; 20(13): 3142-54, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19420137

RESUMEN

Adrenal medullary chromaffin cells are innervated by the sympathetic splanchnic nerve and translate graded sympathetic firing into a differential hormonal exocytosis. Basal sympathetic firing elicits a transient kiss-and-run mode of exocytosis and modest catecholamine release, whereas elevated firing under the sympathetic stress response results in full granule collapse to release catecholamine and peptide transmitters into the circulation. Previous studies have shown that rearrangement of the cell actin cortex regulates the mode of exocytosis. An intact cortex favors kiss-and-run exocytosis, whereas disrupting the cortex favors the full granule collapse mode. Here, we investigate the specific roles of two actin-associated proteins, myosin II and myristoylated alanine-rich C-kinase substrate (MARCKS) in this process. Our data demonstrate that MARCKS phosphorylation under elevated cell firing is required for cortical actin disruption but is not sufficient to elicit peptide transmitter exocytosis. Our data also demonstrate that myosin II is phospho-activated under high stimulation conditions. Inhibiting myosin II activity prevented disruption of the actin cortex, full granule collapse, and peptide transmitter release. These results suggest that phosphorylation of both MARCKS and myosin II lead to disruption of the actin cortex. However, myosin II, but not MARCKS, is required for the activity-dependent exocytosis of the peptide transmitters.


Asunto(s)
Actinas/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Miosina Tipo II/metabolismo , Neuropéptidos/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Azepinas/farmacología , Carbazoles/farmacología , Catecolaminas/metabolismo , Células Cultivadas , Células Cromafines/citología , Células Cromafines/fisiología , Cromograninas/metabolismo , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inmunohistoquímica , Indoles , Péptidos y Proteínas de Señalización Intracelular/genética , Maleimidas , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Miosina Tipo II/genética , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Naftalenos/farmacología , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...