Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(3)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35336962

RESUMEN

Salmonella enterica serovar Newport bacteriophage 7-11 shares 41 homologous ORFs with Escherichia coli phage phiEco32, and both phages encode a protein similar to bacterial RNA polymerase promoter specificity σ subunit. Here, we investigated the temporal pattern of 7-11 gene expression during infection and compared it to the previously determined transcription strategy of phiEco32. Using primer extension and in vitro transcription assays, we identified eight promoters recognized by host RNA polymerase holoenzyme containing 7-11 σ subunit SaPh711_gp47. These promoters are characterized by a bipartite consensus, GTAAtg-(16)-aCTA, and are located upstream of late phage genes. While dissimilar from single-element middle and late promoters of phiEco32 recognized by holoenzymes formed by the phi32_gp36 σ factor, the 7-11 late promoters are located at genome positions similar to those of phiEco32 middle and late promoters. Two early 7-11 promoters are recognized by the RNA polymerase holoenzyme containing the host primary σ70 factor. Unlike the case of phiEco32, no shut-off of σ70-dependent transcription is observed during 7-11 infection and there are no middle promoters. These differences can be explained by the fact that phage 7-11 does not encode a homologue of phi32_gp79, an inhibitor of host and early phage transcription and an activator of transcription by the phi32_gp36-holoenzyme.


Asunto(s)
Bacteriófagos , Factor sigma , Bacteriófagos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Holoenzimas/genética , Holoenzimas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Nucleic Acids Res ; 50(2): 1162-1173, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34951459

RESUMEN

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.


Asunto(s)
Acidaminococcus , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , División del ADN , Francisella/genética , Francisella/metabolismo , Edición Génica
3.
Viruses ; 12(8)2020 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722583

RESUMEN

The Escherichia coli bacteriophage T5 has three temporal classes of genes (pre-early, early, and late). All three classes are transcribed by host RNA polymerase (RNAP) containing the σ70 promoter specificity subunit. Molecular mechanisms responsible for the switching of viral transcription from one class to another remain unknown. Here, we find the product of T5 gene 026 (gpT5.026) in RNAP preparations purified from T5-infected cells and demonstrate in vitro its tight binding to E. coli RNAP. While proteins homologous to gpT5.026 are encoded by all T5-related phages, no similarities to proteins with known functions can be detected. GpT5.026 binds to two regions of the RNAP ß subunit and moderately inhibits RNAP interaction with the discriminator region of σ70-dependent promoters. A T5 mutant with disrupted gene 026 is viable, but the host cell lysis phase is prolongated and fewer virus particles are produced. During the mutant phage infection, the number of early transcripts increases, whereas the number of late transcripts decreases. We propose that gpT5.026 is part of the regulatory cascade that orchestrates a switch from early to late bacteriophage T5 transcription.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Colifagos/genética , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Virales/genética , Proteínas Portadoras/aislamiento & purificación , Regulación Viral de la Expresión Génica , Unión Proteica , Transcripción Genética
4.
J Biol Chem ; 295(19): 6509-6517, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32241913

RESUMEN

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , Francisella/química , ARN Bacteriano/química , ARN Guía de Kinetoplastida/química , Staphylococcus aureus/química , Streptococcus pyogenes/química
5.
Methods Enzymol ; 616: 337-363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30691650

RESUMEN

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Sondas de ADN/metabolismo , Fluorometría/métodos , ARN Guía de Kinetoplastida/metabolismo
6.
RNA Biol ; 16(4): 413-422, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30022698

RESUMEN

Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors. Here, we define the seed sequence of the Type V Cas12b effector from Bacillus thermoamylovorans. While the Cas12b seed is just five bases long, in contrast to all other effectors characterized to date, the nucleotide base at the site of target cleavage makes a very strong contribution to target binding. The generality of this additional requirement was confirmed during analysis of target recognition by Cas12b effector from Alicyclobacillus acidoterrestris. Thus, while the short seed may contribute to Cas12b promiscuity, the additional specificity determinant at the site of cleavage may have a compensatory effect making Cas12b suitable for specialized genome editing applications.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Bacillus/genética , Secuencia de Bases , ADN Bacteriano/genética , Escherichia coli , Biblioteca de Genes , Conformación de Ácido Nucleico
7.
Nucleic Acids Res ; 46(1): 431-441, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29165680

RESUMEN

RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23-45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T. thermophilus RNAP•σA holoenzyme complexed with gp39. Here, we solved the structure of the RNAP•σA holoenzyme bound with both gp39 and gp76, which revealed an unprecedented inhibition mechanism by gp76. The acidic protein gp76 binds within the RNAP cleft and occupies the path of the template DNA strand at positions -11 to -4, relative to the transcription start site at +1. Thus, gp76 obstructs the formation of an open promoter complex and prevents transcription by T. thermophilus RNAP from most host promoters. gp76 is less inhibitory for phage transcription, as tighter RNAP interaction with the phage promoters allows the template DNA to compete with gp76 for the common binding site. gp76 also inhibits Escherichia coli RNAP highlighting the template-DNA binding site as a new target site for developing antibacterial agents.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Thermus thermophilus/enzimología , Proteínas Virales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Interacciones Huésped-Patógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Thermus thermophilus/genética , Thermus thermophilus/virología , Proteínas Virales/química , Proteínas Virales/genética
8.
Biochem J ; 474(24): 4053-4064, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101286

RESUMEN

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5'-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor sigma/metabolismo , Elongación de la Transcripción Genética/fisiología , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Estructura Secundaria de Proteína , Factor sigma/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética
9.
Proc Natl Acad Sci U S A ; 114(21): 5443-5448, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484024

RESUMEN

The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , Endonucleasas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteína 9 Asociada a CRISPR , Escherichia coli
10.
Nucleic Acids Res ; 44(22): 10849-10861, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27738137

RESUMEN

The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.


Asunto(s)
Escherichia coli/genética , Adaptación Fisiológica , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Interferencia de ARN , ARN Bacteriano/fisiología
11.
Nucleic Acids Res ; 44(6): 2837-45, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26945042

RESUMEN

CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3'-terminal segments. This result implies that the 3'-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3'-terminal stem loops leads to reduced activity during genomic editing.


Asunto(s)
Bioensayo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Oligonucleótidos/metabolismo , ARN Guía de Kinetoplastida/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Proteína 9 Asociada a CRISPR , Endonucleasas/genética , Endonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Datos de Secuencia Molecular , Oligonucleótidos/síntesis química , Unión Proteica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
12.
Methods ; 86: 19-26, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25956222

RESUMEN

The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions. This paper focuses on methodological aspects of application of this powerful assay to study the mechanism of transcription initiation complex formation by Escherichia coli RNA polymerase σ(70) holoenzyme and its regulation by bacterial and phage encoded factors.


Asunto(s)
Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regiones Promotoras Genéticas , Transcripción Genética , Proteínas de Unión al ADN/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Fluorometría , Modelos Moleculares , Unión Proteica
13.
Methods Mol Biol ; 1276: 199-210, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665565

RESUMEN

RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions. Here, we present detailed protocols for the preparation of an Escherichia coli molecular beacon and its application to study RNA polymerase interactions with model promoter fragments.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Fluorometría/métodos , Modelos Moleculares , Técnicas de Sonda Molecular , Regiones Promotoras Genéticas/genética , Transcripción Genética/fisiología , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/enzimología , Datos de Secuencia Molecular , Transcripción Genética/genética
14.
J Mol Biol ; 426(24): 3973-3984, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25311862

RESUMEN

Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.


Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Biocatálisis , ADN Bacteriano/química , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción
15.
Elife ; 3: e02450, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24755292

RESUMEN

Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.


Asunto(s)
Nucleótidos/metabolismo , Péptidos Cíclicos/metabolismo , ARN Polimerasa I/metabolismo , Aminoglicósidos/química , Aminoglicósidos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/enzimología , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Rifamicinas/farmacología , Thermus thermophilus/enzimología , Transcripción Genética/efectos de los fármacos
16.
Bacteriophage ; 4(1): e28520, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24701369

RESUMEN

Many bacteriophages produce small proteins that specifically interfere with the bacterial host transcription machinery and thus contribute to the acquisition of the bacterial cell by the bacteriophage. We recently described how a small protein, called P7, produced by the Xp10 bacteriophage inhibits bacterial transcription initiation by causing the dissociation of the promoter specificity sigma factor subunit from the host RNA polymerase holoenzyme. In this addendum to the original publication, we present the highlights of that research.

17.
Nucleic Acids Res ; 42(7): 4294-305, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24482445

RESUMEN

Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic ß and ß' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the σ(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.


Asunto(s)
Bacteriófagos/fisiología , ARN Polimerasas Dirigidas por ADN/química , Factor sigma/metabolismo , Factores de Transcripción/química , Iniciación de la Transcripción Genética , Proteínas Virales/química , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Factor sigma/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo
18.
Nucleic Acids Res ; 41(15): 7276-85, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23771146

RESUMEN

RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides. The results reveal a strong cooperation between RNAP interactions with individual -10 element non-template strand nucleotides and indicate that recognition of the -10 element bases occurs only when free energy of the overall RNAP -10 element binding reaches a certain threshold level. The threshold-like mode of the -10 element recognition may be related to the energetic cost of attaining a conformation of the -10 element that is recognizable by RNAP. The RNAP interaction with T/A-12 base pair was found to be strongly stimulated by RNAP interactions with other -10 element bases and with promoter spacer between the -10 and -35 promoter elements. The data also indicate that unmelted -10 promoter element can impair RNAP interactions with promoter DNA upstream of the -11 position. We suggest that cooperativity and threshold effects are important factors guiding the dynamics and selectivity of RPo formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética , Emparejamiento Base , Secuencia de Consenso , ADN Bacteriano/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Transferencia de Energía , Escherichia coli/enzimología , Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Mapeo de Interacción de Proteínas , Transcripción Genética
19.
Nucleic Acids Res ; 40(22): 11352-62, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23087380

RESUMEN

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Regiones Promotoras Genéticas , Factor sigma/metabolismo , Thermus/enzimología , Iniciación de la Transcripción Genética , Secuencia de Bases , ADN/química , ADN/metabolismo , Sondas de ADN , ADN de Cadena Simple/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Fluorometría/métodos , Calor , Datos de Secuencia Molecular , Sondas de Oligonucleótidos , Factor sigma/química , Especificidad de la Especie , Thermus/genética
20.
Mol Cell ; 47(5): 755-66, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22819324

RESUMEN

The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) ß' subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec ß' jaw domain complex and show that Gp2 and DNA compete for binding to the ß' jaw domain. We reveal that efficient inhibition of RPo formation by Gp2 requires the amino-terminal σ(70) domain region 1.1 (R1.1), and that Gp2 antagonizes the obligatory movement of R1.1 during RPo formation. We demonstrate that Gp2 inhibits RPo formation not just by steric occlusion of the RNAp-DNA interaction but also through long-range antagonistic effects on RNAp-promoter interactions around the RNAp active center that likely occur due to repositioning of R1.1 by Gp2. The inhibition of Ec RNAp by Gp2 thus defines a previously uncharacterized mechanism by which bacterial transcription is regulated by a viral factor.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Escherichia coli/enzimología , Proteínas Represoras/metabolismo , ADN Bacteriano/química , ADN Bacteriano/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...