Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38472726

RESUMEN

Several drugs can be used for treating inflammatory skin pathologies like dermatitis and psoriasis. However, for the management of chronic and long-term cases, topical administration is preferred over oral delivery since it prevents certain issues due to systemic side effects from occurring. Cyclosporin A (CsA) has been used for this purpose; however, its high molecular weight (1202 Da) restricts the diffusion through the skin structure. Here, we developed a nano-in-micro device combining lipid vesicles (LVs) and dissolving microneedle array patches (DMAPs) for targeted skin delivery. CsA-LVs allowed the effective incorporation of CsA in the hydrophilic DMAP matrix despite the hydrophobicity of the drug. Polymeric matrix composed of poly (vinyl alcohol) (5% w/v), poly (vinyl pyrrolidine) (15% w/v) and CsA-LV dispersion (10% v/v) led to the formation of CsA-LVs@DMAPs with adequate mechanical properties to penetrate the stratum corneum barrier. The safety and biocompatibility were ensured in an in vitro viability test using HaCaT keratinocytes and L929 fibroblast cell lines. Ex vivo permeability studies in a Franz-diffusion cell setup showed effective drug retention in the skin structure. Finally, CsA-LVs@DMAPs were challenged in an in vivo murine model of delayed-type hypersensitivity to corroborate their potential to ameliorate skin inflammatory conditions. Different findings like photon emission reduction in bioluminescence study, normalisation of histological damage and decrease of inflammatory cytokines point out the effectivity of CsA-LVs@DMAPs to treat these conditions. Overall, our study demonstrates that CsA-LVs@DMAPs can downregulate the skin inflammatory environment which paves the way for their clinical translation and their use as an alternative to corticosteroid-based therapies.

2.
Drug Deliv Transl Res ; 14(6): 1725-1734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341386

RESUMEN

Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.


Asunto(s)
Antibacterianos , Sistemas de Liberación de Medicamentos , Humanos , Antibacterianos/administración & dosificación , Antibacterianos/química , Animales , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana , Bacterias/efectos de los fármacos , Tolerancia a Medicamentos
3.
Int J Biol Macromol ; 263(Pt 2): 130301, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382776

RESUMEN

The development of a self-regulated minimally invasive system for insulin delivery can be considered as the holy grail in the field of diabetes mellitus. A delivery system capable of releasing insulin in response to blood glucose levels would significantly improve the quality of life of diabetic patients, eliminating the need for frequent finger-prick tests and providing better glycaemic control with lower risk of hypoglycaemia. In this context, the latest advances in glucose-responsive microneedle-based transdermal insulin delivery are here compiled with a thorough analysis of the delivery mechanisms and challenges lying ahead in their clinical translation. Two main groups of microneedle-based systems have been developed so far: glucose oxidase-containing and phenylboronic acid-containing systems. Both strategies in combination have also been tested and two other novel strategies are under development, namely electronic closed-loop and glucose transporter-based systems. Results from preclinical studies conducted using these different types of glucose-triggered release systems are comprehensively discussed. Altogether, this analysis from both a mechanistic and translational perspective will provide rationale and/or guidance for future trends in the research hotspot of glucose-responsive microneedle-based insulin delivery systems.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Insulina/uso terapéutico , Glucosa , Calidad de Vida , Sistemas de Liberación de Medicamentos/métodos , Administración Cutánea , Glucemia/análisis
4.
Biomaterials ; 302: 122348, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866013

RESUMEN

The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.


Asunto(s)
Folículo Piloso , Cabello , Piel/metabolismo , Ingeniería de Tejidos/métodos , Regeneración/fisiología
5.
Contemp Nurse ; 59(6): 443-461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751247

RESUMEN

BACKGROUND: Difficulty in adherence to treatment and self-care behaviours is a leading cause of preventable readmission in people with chronic heart failure (CHF). Although there is evidence of benefits of health coaching for the management of this situation, few interventions have been tested in the hospital setting. AIM: To evaluate a coaching programme (H-Coaching) designed to develop nursing capacity in health coaching for chronic heart failure inpatients. METHODS: A quasi-experimental pre-post study including all nurses in a single centre cardiology ward (N = 19). The intervention consisted of two training packages: (1) five theoretical-practical sessions on health-coaching competencies, emotional intelligence, communication and support of chronic heart failure patients in their illness in the hospital setting; and (2) training sessions seven months after the first training package to reinforce the theoretical and practical knowledge. On four occasions, the Competence Instrument of Health Education for the Nursing professional was used to measure nurses' knowledge, skills and attitudes in health coaching for chronic heart failure patients. RESULTS: The difference between the preintervention and postintervention scores were statistically significant for knowledge [mean difference = 1.00 (95% CI -1.45 to -0.51; p = 0.000)], skills in general [mean difference = 0.50 (95% CI -1.41 to -0.21; p = 0.015)] and personal/social skills [mean difference = 1.00 (95% CI -1.10 to -0.01; p = 0.048)]. While attitudinal and affective domains did not differ, there were differences in knowledge and skills. CONCLUSION: The H-Coaching programme proved to be effective for building nursing capacity in health coaching CHF inpatients. Similar programmes designed to improve knowledge in verbal and nonverbal communication techniques, and skills for coaching interventions adapted to meet the needs of individual patients, should be tested in future interventional experimental studies. CLINICAL TRIAL REGISTRATION NUMBER: NCT05300880. IMPACT STATEMENT: To our knowledge, this is the first nursing training intervention in health coaching for chronic heart failure the inpatient setting. This study has demonstrate improvements in both the knowledge and personal and social skills of cardiology nurses with regard to the development of health coaching in a hospital setting. Given the study design, further research is warranted. PLAIN LANGUAGE SUMMARY: Many patients with chronic heart failure have problems in adhering to the treatment and self-care behaviours and this is one of the main causes of preventable readmission. To promote self-care, patients need to be empowered to integrate these habits into their daily lives and we should implement innovative strategies to achieve this. Health coaching is an ideal alternative to this but very few nurses in the hospital cardiology setting are experienced in health coaching. Our study has shown preliminary results demonstrating that a structured theoretical and practical training programme for nurses can improve nurses' knowledge and skills in health coaching for inpatient patients with chronic heart failure. This study provides an opportunity for future research to demonstrate whether nurses with this training have a positive impact on the health outcomes of chronic heart failure patients and, more specifically, on their levels of self-care and empowerment.


Asunto(s)
Insuficiencia Cardíaca , Tutoría , Enfermeras y Enfermeros , Humanos , Competencia Clínica , Creación de Capacidad , Conocimientos, Actitudes y Práctica en Salud
6.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570811

RESUMEN

Propolis is a natural bee-produced substance with antimicrobial, anti-inflammatory, and wound-healing properties, containing some components from the leaves, buds and resins of plants. It has been used for centuries for various health benefits. In this manuscript, our group reviewed the radioprotective effect of propolis using PubMed and Embase, and our review was conducted according to the PRISMA statement. Finally, 27 articles were included in this review, which includes the radioprotective effect of propolis from cell-based studies (n = 8), animal models (n = 14), and human trials (n = 5). Results reflected that the dosage forms of propolis extracted in the scientific literature were ethanolic extracts of propolis, a water-soluble derivate of propolis, or capsules. The efficacy of the radioprotective properties from propolis is extracted from the bibliography, as several compounds of this resinous mixture individually or synergistically are possible candidates that have the radioprotective effect. In fact, studies prior to 2011 lacked a comprehensive characterization of propolis due to the variability in active compounds among different batches of propolis and were limited to analytical techniques. Furthermore, in this manuscript, we have selected studies to include primarily propolis types from Brazil, Croatia, Egypt, European countries, and those commercialized in Spain. They all contained ethanolic extract of propolis (EEP) and were influenced by different dosage forms. EEP showed a significant presence of lipophilic bioactive compounds like flavones, flavonols, and flavanones.


Asunto(s)
Antiinfecciosos , Flavanonas , Própolis , Humanos , Animales , Própolis/farmacología , Antiinfecciosos/farmacología , Etanol , Agua
7.
Antioxidants (Basel) ; 12(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37507975

RESUMEN

In recent years, there has been growing scientific interest in the search for natural radioprotectors that can be used to mitigate the effects of radiation on patients, healthcare personnel, and even for space travel. This narrative review covers the past fifty years and focuses on herbal preparations of Ayurvedic, Traditional Chinese, and Kampo Medicines that have the potential to reduce or eliminate the harmful effects of radiation. Our findings highlight ten herbal preparations, namely Abana, Amalakyadi Churna, Amritaprasham, Brahma, Bu-zhong-yi-qi-tang (BZYQT), Chyavanaprasha, Cystone, Geriforte, Mentat, and Triphala, which have demonstrated potential radioprotective effects. This review examines their composition, properties, and possible mechanisms of action in relation to their radioprotective properties. Exploring the ethnobotany of traditional Asian medicine is particularly interesting as it may lead to the discovery of new active compounds with radioprotective properties.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37041036

RESUMEN

Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Administración Cutánea , Piel/metabolismo , Preparaciones Farmacéuticas
9.
Antioxidants (Basel) ; 12(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36978859

RESUMEN

The radioprotective effect ex vivo, in vitro and in vivo of vitamins was reviewed using PubMed and Embase and conducted according to the PRISMA statement. A total of 38 articles were included in this review, which includes the radioprotective effect of vitamins from ex vivo, in vitro and in vivo studies. Vitamins A, C, D and E were used alone, in combination or with other nutritional and non-nutritional compounds. The use of vitamins in natural form or supplementation can be useful to reduce the radiation effect in the body, organs and/or cells. Only four (A, C, D and E) out of thirteen vitamins have been detected with radioprotective properties being mainly vitamin E followed by vitamin C, A and D.

10.
J Control Release ; 355: 624-654, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775245

RESUMEN

Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.


Asunto(s)
Portadores de Fármacos , Liposomas , Humanos , Piel , Sistemas de Liberación de Medicamentos , Administración Cutánea , Vesícula , Lípidos
11.
Artículo en Inglés | MEDLINE | ID: mdl-36361119

RESUMEN

INTRODUCTION: The COVID-19 pandemic has affected many areas of life, including the formation of nursing students. After the COVID-19 crisis, learning during clinical training created different challenges. Nursing schools are responsible for ensuring that structures are in place to facilitate coping in the changed clinical setting. This study aimed to analyze nursing students' perceptions during clinical training while caring for COVID-19 patients. MATERIAL AND METHODS: A qualitative phenomenological study that explored nursing students' perceptions of learning in clinical settings with COVID-19 patients was performed. A total of 15 semi-structured face-to-face interviews were conducted with nursing students who carried out their clinical practices in COVID-19 units during February and April 2022. RESULTS: Through content analysis, categorization, and the method of comparison constant, four categories emerged: feelings, challenges, coping methods, and clinical practices. The students had to learn to "work" with fear and uncertainty and self-manage the emotional burden using different coping techniques to deal with learning during their practices. Interacting with professors and clinical tutors during the clinical practice were positive experiences. CONCLUSIONS: This study constituted an opportunity to build new and adapted educational approaches for teachers to train nursing students to deal with their emotions and thoughts in future pandemic situations.


Asunto(s)
COVID-19 , Bachillerato en Enfermería , Estudiantes de Enfermería , Humanos , Estudiantes de Enfermería/psicología , COVID-19/epidemiología , Pandemias , Bachillerato en Enfermería/métodos , Aprendizaje
12.
Life (Basel) ; 12(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35888137

RESUMEN

Vitamins are widely found in nature, for example, in plants and fruits. Ascorbic acid and nicotinamide are examples of these compounds that have potent antioxidant properties, besides stimulating collagen production and depigmenting properties that protect the skin from premature aging. To overcome the skin barrier and reduce the instability of antioxidant compounds, alternative systems have been developed to facilitate the delivery of antioxidants, making them efficiently available to the tissue for an extended time without causing damage or toxicity. The objective of this study was to obtain chitosan biodegradable microparticles containing ascorbic acid and nicotinamide for topical delivery. The microparticles were obtained by spray drying and characterized chemically by means of scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and differential exploratory calorimetry. The drugs were successfully encapsulated and the microparticles showed positive zeta potential. In vitro release assays showed a sustained release profile. The evaluation of ex vivo skin permeation and retention demonstrated low permeation and adequate retention of the compounds in the epidermis/dermis, suggesting the efficient delivery from the obtained microparticles. Antibacterial assays have shown that microparticles can inhibit the growth of microorganisms in a time- and dose-dependent manner, corroborating their use in cosmetic products for application on the skin.

13.
Eur J Pharm Biopharm ; 177: 184-198, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35787430

RESUMEN

Vitamin B12 (cyanocobalamin) deficiency is a widespread condition because of its different aetiologies, like malabsorption syndrome or lifestyles as strict veganism that is increasing its incidence and prevalence in developed countries. It has important haematological consequences that require pharmacological treatment. Current therapy consists of oral or parenteral supplements of cyanocobalamin; however, the oral route is discarded for malabsorption syndrome patients and the parenteral route is not well accepted generally. Topical treatments have been suggested as an alternative, but the molecular weight and hydrophilicity of cyanocobalamin limits its diffusion through the skin. Lipid vesicles can allow the transdermal absorption of molecules > 500 Da. The aim of this work was to use different ultraflexible lipid vesicles (transfersomes and ethosomes) to enhance cyanocobalamin transdermal delivery. Vesicles were characterized and lyophilised for long-term stability. The ability to deliver cyanocobalamin through the skin was assessed in vitro using full-thickness porcine skin in Franz diffusion cells. As expected, the best transdermal fluxes were provided by ultraflexible vesicles, in comparison to a drug solution. Moreover, the pre-treatment of the skin with a solid microneedle array boosts the amount of drug that could potentially reach the systemic circulation.


Asunto(s)
Liposomas , Síndromes de Malabsorción , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Lípidos , Síndromes de Malabsorción/metabolismo , Piel/metabolismo , Absorción Cutánea , Porcinos , Vitamina B 12
14.
Neurochem Res ; 47(10): 3076-3092, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35767135

RESUMEN

Down syndrome (DS) induces a variable phenotype including intellectual disabilities and early development of Alzheimer's disease (AD). Moreover, individuals with DS display accelerated aging that affects diverse organs, among them the brain. The Ts65Dn mouse is the most widely used model to study DS. Progressive loss of cholinergic neurons is one of the hallmarks of AD present in DS and in the Ts65Dn model. In this study, we quantify the number of cholinergic neurons in control and Ts65Dn mice, observing a general reduction in their number with age but in particular, a greater loss in old Ts65Dn mice. Increased expression of the m1 muscarinic receptor in the hippocampus counteracts this loss. Cholinergic neurons in the Ts65Dn mice display overexpression of the early expression gene c-fos and an increase in the expression of ß-galactosidase, a marker of senescence. A possible mechanism for senescence induction could be phosphorylation of the transcription factor FOXO1 and its retention in the cytoplasm, which we are able to confirm in the Ts65Dn model. In our study, using Ts65Dn mice, we observe increased cholinergic activity, which induces a process of early senescence that culminates in the loss of these neurons.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/metabolismo , Animales , Colinérgicos , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos
16.
Pharmaceutics ; 13(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834360

RESUMEN

3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.

17.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172583

RESUMEN

Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.


Asunto(s)
Antineoplásicos/toxicidad , Antineoplásicos/uso terapéutico , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Inmunoterapia , Inflamación/patología , Hígado/patología , Neoplasias Pulmonares/secundario , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Ratones , Terapia Neoadyuvante , Péptido Hidrolasas/metabolismo
18.
Pharmaceutics ; 13(3)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804652

RESUMEN

Atopic dermatitis (AD) and psoriasis are the most common chronic inflammatory skin disorders, which importantly affect the quality of life of patients who suffer them. Among other causes, nitric oxide has been reported as part of the triggering factors in the pathogenesis of both conditions. Cyanocobalamin (vitamin B12) has shown efficacy as a nitric oxide scavenger and some clinical trials have given positive outcomes in its use for treating skin pathologies. Passive skin diffusion is possible only for drugs with low molecular weights and intermediate lipophilicity. Unfortunately, the molecular weight and hydrophilicity of vitamin B12 do not predict its effective diffusion through the skin. The aim of this work was to design new lipid vesicles to encapsulate the vitamin B12 to enhance its skin penetration. Nine prototypes of vesicles were generated and characterized in terms of size, polydispersity, surface charge, drug encapsulation, flexibility, and stability with positive results. Additionally, their ability to release the drug content in a controlled manner was demonstrated. Finally, we found that these lipid vesicle formulations facilitated the penetration of cyanocobalamin to the deeper layers of the skin. The present work shows a promising system to effectively administer vitamin B12 topically, which could be of interest in the treatment of skin diseases such as AD and psoriasis.

19.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672366

RESUMEN

Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.

20.
Drug Deliv Transl Res ; 11(2): 608-625, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33528829

RESUMEN

Infections of the eye are among the leading causes of vision impairment and vision loss worldwide. The ability of a drug to access the anterior parts of the eye is negligible after systemic administration. Effective drug delivery to the eye is a major challenge due to the presence of protective mechanisms and physiological barriers that result in low ocular availability after topical application. The main purpose of this work was the improvement of the corneal and conjunctival permeation of the antibiotic Ciprofloxacin, a wide spectrum antibiotic used for the most common eye infection, using a self-dissolving polymeric film. Films were prepared by the solvent casting technique, using polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus), polyvynyl alcohol, and propylene glycol. Films were homogeneous in drug content and thickness, as demonstrated by adapting the Swiss Roll technique followed by microscopy observation. These films proved in vitro to control the release of the Ciprofloxacin. Ex vivo permeability studies using Franz diffusion cells and porcine cornea and sclera showed an effective permeability of the drug without inducing irritation of the tissues. Films swelled in contact with artificial tears forming an in situ gel over 20 min, which will improve drug contact and reduce the need of multiple dosing. The antibiotic activity was also tested in vitro in five types of bacterial cultures, assuring the pharmacological efficacy of the films. The developed films are a promising drug delivery system to topically treat or prevent ocular infections.


Asunto(s)
Infecciones del Ojo , Polivinilos , Animales , Ciprofloxacina , Córnea , Sistemas de Liberación de Medicamentos , Polietilenglicoles , Polímeros , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA