Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126102

RESUMEN

Eosinophilic esophagitis (EoE) and inflammatory bowel disease (IBD) are chronic inflammatory disorders of the gastrointestinal tract, with EoE predominantly provoked by food and aeroallergens, whereas IBD is driven by a broader spectrum of immunopathological and environmental triggers. This review presents a comprehensive comparison of the pathophysiological and therapeutic strategies for EoE and IBD. We examine the current understanding of their underlying mechanisms, particularly the interplay between environmental factors and genetic susceptibility. A crucial element in both diseases is the integrity of the epithelial barrier, whose disruption plays a central role in their pathogenesis. The involvement of eosinophils, mast cells, B cells, T cells, dendritic cells, macrophages, and their associated cytokines is examined, highlighting the importance of targeting cytokine signaling pathways to modulate immune-epithelial interactions. We propose that advances in computation tools will uncover the significance of G-protein coupled receptors (GPCRs) in connecting immune and epithelial cells, leading to novel therapies for EoE and IBD.


Asunto(s)
Esofagitis Eosinofílica , Enfermedades Inflamatorias del Intestino , Humanos , Esofagitis Eosinofílica/etiología , Esofagitis Eosinofílica/inmunología , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Animales , Citocinas/metabolismo , Eosinófilos/metabolismo , Eosinófilos/inmunología , Eosinófilos/patología , Predisposición Genética a la Enfermedad
2.
J Plast Reconstr Aesthet Surg ; 87: 352-360, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925927

RESUMEN

OBJECTIVE: Hepatic artery anastomosis in liver transplantations requires a meticulous technique to minimize the risk of hepatic artery thrombosis (HAT). The microscope helped improve anastomosis techniques in pediatric patients with small caliber vessels. The aim of this review was to compare microsurgical and non-microsurgical techniques on the incidence of HAT in liver transplantations. The secondary objective was to compare HAT incidence between pediatric and adult cohorts and between plastic and transplant surgeons. METHODS: A systematic review of the literature using Medline, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) was conducted on studies involving HAT in liver transplantations with microsurgery. Three reviewers performed a full article review and data extraction for studies meeting the eligibility criteria of the study. RESULTS: Forty-five studies were incorporated in the final analysis. A total of 7346 patients and 7506 liver transplants were included. The mean age was 17 years old with an equivalent distribution between pediatric (51%, n = 3218) and adult patients (49%, n = 3145). A total of 6351 of these transplantations underwent microsurgical repair, against 1157 with non-microsurgical techniques. The overall HAT rate was 4.9%, including 4.2% in the microsurgical group (n = 268) and 8.5% in the non-microsurgical group (n = 98), a statistically significant increase of 4.3%. The occurrence of HAT was 2.6% with a plastic surgeon versus 4.6% with other types of surgeons. When using microsurgical techniques, the HAT rate was 4.2% with living donors versus 7.7% with deceased donors. CONCLUSIONS: HAT and subsequent liver transplant failure are lower when microsurgical techniques, living donors, and plastic surgeons with a microsurgical training are involved in the operation.


Asunto(s)
Trasplante de Hígado , Trombosis , Adulto , Humanos , Niño , Adolescente , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Arteria Hepática/cirugía , Anastomosis Quirúrgica/métodos , Trombosis/epidemiología , Trombosis/etiología , Trombosis/cirugía , Microcirugia/métodos , Donadores Vivos , Estudios Retrospectivos
3.
Cell Rep ; 42(8): 113005, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590143

RESUMEN

The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.


Asunto(s)
Encefalitis , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Animales , Ácido Quinurénico , Triptófano , Macrófagos
4.
Gut ; 72(5): 821-833, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35613844

RESUMEN

OBJECTIVE: Disruption of the epithelial barrier plays an essential role in developing eosinophilic oesophagitis (EoE), a disease defined by type 2 helper T cell (Th2)-mediated food-associated and aeroallergen-associated chronic inflammation. Although an increased expression of interleukin (IL)-20 subfamily members, IL-19, IL-20 and IL-24, in Th2-mediated diseases has been reported, their function in EoE remains unknown. DESIGN: Combining transcriptomic, proteomic and functional analyses, we studied the importance of the IL-20 subfamily for EoE using patient-derived oesophageal three-dimensional models and an EoE mouse model. RESULTS: Patients with active EoE have increased expression of IL-20 subfamily cytokines in the oesophagus and serum. In patient-derived oesophageal organoids stimulated with IL-20 cytokines, RNA sequencing and mass spectrometry revealed a downregulation of genes and proteins forming the cornified envelope, including filaggrins. On the contrary, abrogation of IL-20 subfamily signalling in Il20R2 -/- animals resulted in attenuated experimental EoE reflected by reduced eosinophil infiltration, lower Th2 cytokine expression and preserved expression of filaggrins in the oesophagus. Mechanistically, these observations were mediated by the mitogen-activated protein kinase (MAPK); extracellular-signal regulated kinases (ERK)1/2) pathway. Its blockade prevented epithelial barrier impairment in patient-derived air-liquid interface cultures stimulated with IL-20 cytokines and attenuated experimental EoE in mice. CONCLUSION: Our findings reveal a previously unknown regulatory role of the IL-20 subfamily for oesophageal barrier function in the context of EoE. We propose that aberrant IL-20 subfamily signalling disturbs the oesophageal epithelial barrier integrity and promotes EoE development. Our study suggests that specific targeting of the IL-20 subfamily signalling pathway may present a novel strategy for the treatment of EoE.


Asunto(s)
Esofagitis Eosinofílica , Animales , Ratones , Citocinas/metabolismo , Proteínas Filagrina , Interleucinas/farmacología , Interleucinas/metabolismo , Proteómica , Humanos
5.
Mucosal Immunol ; 15(3): 443-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264769

RESUMEN

Goblet cells secrete mucin to create a protective mucus layer against invasive bacterial infection and are therefore essential for maintaining intestinal health. However, the molecular pathways that regulate goblet cell function remain largely unknown. Although GPR35 is highly expressed in colonic epithelial cells, its importance in promoting the epithelial barrier is unclear. In this study, we show that epithelial Gpr35 plays a critical role in goblet cell function. In mice, cell-type-specific deletion of Gpr35 in epithelial cells but not in macrophages results in goblet cell depletion and dysbiosis, rendering these animals more susceptible to Citrobacter rodentium infection. Mechanistically, scRNA-seq analysis indicates that signaling of epithelial Gpr35 is essential to maintain normal pyroptosis levels in goblet cells. Our work shows that the epithelial presence of Gpr35 is a critical element for the function of goblet cell-mediated symbiosis between host and microbiota.


Asunto(s)
Infecciones por Enterobacteriaceae , Células Caliciformes , Animales , Citrobacter rodentium , Colon/microbiología , Infecciones por Enterobacteriaceae/metabolismo , Células Caliciformes/fisiología , Mucosa Intestinal/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Gut ; 71(12): 2526-2538, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35058274

RESUMEN

OBJECTIVE: Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN: We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS: MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION: Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Activación de Linfocitos
7.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948435

RESUMEN

Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.


Asunto(s)
Células Epiteliales , Microbioma Gastrointestinal , Mucinas/metabolismo , Animales , Colitis , Células Caliciformes/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino , Ratones , Mucinas/fisiología
8.
Front Immunol ; 12: 717392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790192

RESUMEN

Diet and gut microbial metabolites mediate host immune responses and are central to the maintenance of intestinal health. The metabolite-sensing G-protein coupled receptors (GPCRs) bind metabolites and trigger signals that are important for the host cell function, survival, proliferation and expansion. On the contrary, inadequate signaling of these metabolite-sensing GPCRs most likely participate to the development of diseases including inflammatory bowel diseases (IBD). In the intestine, metabolite-sensing GPCRs are highly expressed by epithelial cells and by specific subsets of immune cells. Such receptors provide an important link between immune system, gut microbiota and metabolic system. Member of these receptors, GPR35, a class A rhodopsin-like GPCR, has been shown to be activated by the metabolites tryptophan-derived kynurenic acid (KYNA), the chemokine CXCL17 and phospholipid derivate lysophosphatidic acid (LPA) species. There have been studies on GPR35 in the context of intestinal diseases since its identification as a risk gene for IBD. In this review, we discuss the pharmacology of GPR35 including its proposed endogenous and synthetic ligands as well as its antagonists. We elaborate on the risk variants of GPR35 implicated in gut-related diseases and the mechanisms by which GPR35 contribute to intestinal homeostasis.


Asunto(s)
Homeostasis , Enfermedades Inflamatorias del Intestino/patología , Intestinos/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Quimiocinas CXC/metabolismo , Humanos , Ácido Quinurénico/metabolismo , Lisofosfolípidos/metabolismo
9.
Cell Rep ; 32(5): 107979, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755573

RESUMEN

Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Homeostasis , Intestinos/fisiología , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Animales , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran , Microbioma Gastrointestinal , Eliminación de Gen , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra
10.
FASEB J ; 34(6): 7311-7329, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285992

RESUMEN

Clinical studies suggest that pregnant women with elevated iron levels are more vulnerable to develop gestational diabetes mellitus (GDM), but the causes and underlying mechanisms are unknown. We hypothesized that hyperglycemia induces cellular stress responses leading to dysregulated placental iron homeostasis. Hence, we compared the expression of genes/proteins involved in iron homeostasis in placentae from GDM and healthy pregnancies (n = 11 each). RT-qPCR and LC-MS/MS analyses revealed differential regulation of iron transporters/receptors (DMT1/FPN1/ZIP8/TfR1), iron sensors (IRP1), iron regulators (HEPC), and iron oxidoreductases (HEPH/Zp). To identify the underlying mechanisms, we adapted BeWo trophoblast cells to normoglycemic (N), hyperglycemic (H), and hyperglycemic-hyperlipidemic (HL) conditions and assessed Fe3+ -uptake, expression patterns, and cellular pathways involving oxidative stress (OS), ER-stress, and autophagy. H and HL induced alterations in cellular morphology, differential iron transporter expression, and reduced Fe3+ -uptake confirming the impact of hyperglycemia on iron transport observed in GDM patients. Pathway analysis and rescue experiments indicated that dysregulated OS and disturbed autophagy processes contribute to the reduced placental iron transport under hyperglycemic conditions. These adaptations could represent a protective mechanism preventing the oxidative damage for both fetus and placenta caused by highly oxidative iron. In pregnancies with risk for GDM, antioxidant treatment, and controlled iron supplementation could help to balance placental OS levels protecting mother and fetus from impaired iron homeostasis.


Asunto(s)
Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatología , Homeostasis/fisiología , Hierro/metabolismo , Placenta/metabolismo , Placenta/fisiopatología , Adulto , Antígenos CD/metabolismo , Antioxidantes/metabolismo , Autofagia/fisiología , Proteínas de Transporte de Catión/metabolismo , Cromatografía Liquida/métodos , Femenino , Ferritinas/metabolismo , Feto/metabolismo , Feto/fisiopatología , Humanos , Masculino , Estrés Oxidativo/fisiología , Embarazo , Receptores de Transferrina/metabolismo , Espectrometría de Masas en Tándem/métodos , Trofoblastos/metabolismo , Trofoblastos/fisiología
11.
Commun Biol ; 3(1): 130, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188932

RESUMEN

Comprehensive development is critical for gut macrophages being essential for the intestinal immune system. However, the underlying mechanisms of macrophage development in the colon remain elusive. To investigate the function of branched-chain amino acids in the development of gut macrophages, an inducible knock-out mouse model for the branched-chain amino acid transporter CD98hc in CX3CR1+ macrophages was generated. The relatively selective deletion of CD98hc in macrophage populations leads to attenuated severity of chemically-induced colitis that we assessed by clinical, endoscopic, and histological scoring. Single-cell RNA sequencing of colonic lamina propria macrophages revealed that conditional deletion of CD98hc alters the "monocyte waterfall"-development to MHC II+ macrophages. The change in the macrophage development after deletion of CD98hc is associated with increased apoptotic gene expression. Our results show that CD98hc deletion changes the development of colonic macrophages.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Colitis/metabolismo , Colon/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/deficiencia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/prevención & control , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colon/ultraestructura , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/ultraestructura , Macrófagos/ultraestructura , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Fenotipo , RNA-Seq , Análisis de la Célula Individual , Adulto Joven
12.
Sci Rep ; 10(1): 1438, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996710

RESUMEN

Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation and can induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), an evolutionary mechanism that enables cells to cope with stressful conditions. ER stress activates autophagy, and both play important roles in gut homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). Using a human intestinal epithelial cell model, we investigated whether our previously observed protective effects of OGR1 deficiency in experimental colitis are associated with a differential regulation of ER stress, the UPR and autophagy. Caco-2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-dependent OGR1-mediated signalling led to a significant upregulation in the ER stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce apoptosis, but triggered accumulation of total microtubule-associated protein 1 A/1B-light chain 3, suggesting blockage of late stage autophagy. Our results show novel functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition might represent a novel therapeutic approach in IBD.


Asunto(s)
Endorribonucleasas/metabolismo , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/metabolismo , Microtúbulos/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidosis , Autofagia , Células CACO-2 , Estrés del Retículo Endoplásmico/genética , Femenino , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Sistema de Señalización de MAP Quinasas , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Respuesta de Proteína Desplegada
13.
Cells ; 8(5)2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091682

RESUMEN

Increasing evidence has indicated that diet and metabolites, including bacteria- and host-derived metabolites, orchestrate host pathophysiology by regulating metabolism, immune system and inflammation. Indeed, autoimmune diseases such as inflammatory bowel disease (IBD) are associated with the modulation of host response to diets. One crucial mechanism by which the microbiota affects the host is signaling through G protein-coupled receptors (GPCRs) termed metabolite-sensing GPCRs. In the gut, both immune and nonimmune cells express GPCRs and their activation generally provide anti-inflammatory signals through regulation of both the immune system functions and the epithelial integrity. Members of GPCR family serve as a link between microbiota, immune system and intestinal epithelium by which all these components crucially participate to maintain the gut homeostasis. Conversely, impaired GPCR signaling is associated with IBD and other diseases, including hepatic steatosis, diabetes, cardiovascular disease, and asthma. In this review, we first outline the signaling, function, expression and the physiological role of several groups of metabolite-sensing GPCRs. We then discuss recent findings on their role in the regulation of the inflammation, their existing endogenous and synthetic ligands and innovative approaches to therapeutically target inflammatory bowel disease.


Asunto(s)
Enfermedades Autoinmunes , Bacterias/metabolismo , Microbioma Gastrointestinal/inmunología , Inflamación , Enfermedades Inflamatorias del Intestino , Receptores Acoplados a Proteínas G/fisiología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/microbiología , Dieta , Homeostasis , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Ratones
14.
Sci Rep ; 9(1): 6225, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996342

RESUMEN

High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown. We aimed to 1) determine the amount and orientation (apical-maternal versus basal-fetal) of placentally secreted apoA1 and apoE using human perfused placenta and primary trophoblast cell (PTC) culture, 2) compare apoA1 and apoE secretions of PTC with that of hepatocytes and 3) associate the obtained results with human blood levels by determining apoA1 and apoE concentrations in maternal and fetal serum samples. In perfused placenta and serum samples, apoA1 and apoE concentrations were significantly higher at the maternal compared to the fetal side. For apoE a similar trend was found in PTC. For apoA1, the secretion to the apical side declined over time while release to the basal side was stable resulting in significantly different apoA1 concentrations between both sides. Unexpectedly, PTC secreted significantly higher amounts of apoA1 and apoE compared to hepatocytes. Our data indicate that the placenta may play an important role in maternal and fetal cholesterol homeostasis via secretion of anti-atherogenic apos.


Asunto(s)
Apolipoproteína A-I/sangre , Apolipoproteínas E/sangre , Aterosclerosis/metabolismo , Colesterol/metabolismo , Feto/metabolismo , Homeostasis/fisiología , Trofoblastos/metabolismo , Adulto , Transporte Biológico/fisiología , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Embarazo
15.
Cell Mol Gastroenterol Hepatol ; 7(2): 339-355, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30704983

RESUMEN

BACKGROUND & AIMS: Hypoxia-associated pathways influence the development of inflammatory bowel disease. Adaptive responses to hypoxia are mediated through hypoxia-inducible factors, which are regulated by iron-dependent hydroxylases. Signals reflecting oxygen tension and iron levels in enterocytes regulate iron metabolism. Conversely, iron availability modulates responses to hypoxia. In the present study we sought to elucidate how iron influences the responses to hypoxia in the intestinal epithelium. METHODS: Human subjects were exposed to hypoxia, and colonic biopsy specimens and serum samples were collected. HT-29, Caco-2, and T84 cells were subjected to normoxia or hypoxia in the presence of iron or the iron chelator deferoxamine. Changes in inflammatory gene expression and signaling were assessed by quantitative polymerase chain reaction and Western blot. Chromatin immunoprecipitation was performed using antibodies against nuclear factor (NF)-κB and primers for the promoter of tumor necrosis factor (TNF) and interleukin (IL)1ß. RESULTS: Human subjects presented reduced levels of ferritin in the intestinal epithelium after hypoxia. Hypoxia reduced iron deprivation-associated TNF and IL1ß expression in HT-29 cells through the induction of autophagy. Contrarily, hypoxia triggered TNF and IL1ß expression, and NF-κB activation in Caco-2 and T84 cells. Iron blocked autophagy in Caco-2 cells, while reducing hypoxia-associated TNF and IL1ß expression through the inhibition of NF-κB binding to the promoter of TNF and IL1ß. CONCLUSIONS: Hypoxia promotes iron mobilization from the intestinal epithelium. Hypoxia-associated autophagy reduces inflammatory processes in HT-29 cells. In Caco-2 cells, iron uptake is essential to counteract hypoxia-induced inflammation. Iron mobilization into enterocytes may be a vital protective mechanism in the hypoxic inflamed mucosa.


Asunto(s)
Hipoxia/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/etiología , Mucosa Intestinal/metabolismo , Hierro/uso terapéutico , FN-kappa B/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Autofagia/efectos de los fármacos , Células CACO-2 , Células HT29 , Humanos , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Mucosa Intestinal/efectos de los fármacos , Persona de Mediana Edad , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
16.
J Crohns Colitis ; 13(6): 785-797, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30590526

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel disease [IBD] is accompanied by lesions in the epithelial barrier, which allow translocation of bacterial products from the gut lumen to the host's circulation. IMM-124E is a colostrum-based product containing high levels of anti-E.coli-LPS IgG, and might limit exposure to bacterial endotoxins. Here, we investigated whether IMM-124E can ameliorate intestinal inflammation. METHODS: Acute colitis was induced in WT C57Bl/6J mice by administration of 2.5% dextran sodium sulphate [DSS] for 7 days. T cell transfer colitis was induced via transfer of 0.5 x 106 naïve T cells into RAG2-/- C57Bl/6J mice. IMM-124E was administered daily by oral gavage, either preventively or therapeutically. RESULTS: Treatment with IMM-124E significantly ameliorated colitis in acute DSS colitis and in T cell transfer colitis. Maximum anti-inflammatory effects were detected at an IMM-124E concentration of 100 mg/kg body weight, whereas 25 mg/kg and 500 mg/kg were less effective. Histology revealed reduced levels of infiltrating immune cells and less pronounced mucosal damage. Flow cytometry revealed reduced numbers of effector T helper cells in the intestine, whereas levels of regulatory T cells were enhanced. IMM-124E treatment reduced the DSS-induced increase of serum levels of lipopolysaccharide [LPS]-binding protein, indicating reduced systemic LPS exposure. CONCLUSIONS: Our results demonstrate that oral treatment with IMM-124E significantly reduces intestinal inflammation, via decreasing the accumulation of pathogenic T cells and concomitantly increasing the induction of regulatory T cells. Our study confirms the therapeutic efficacy of IMM-124E in acute colitis and suggests that administration of IMM-124E might represent a novel therapeutic strategy to induce or maintain remission in chronic colitis.


Asunto(s)
Colitis/tratamiento farmacológico , Calostro/química , Animales , Western Blotting , Bovinos , Colitis/patología , Colon/patología , Calostro/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Inmunoglobulina G/inmunología , Inmunoglobulina G/uso terapéutico , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo
17.
PLoS One ; 13(2): e0193003, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447283

RESUMEN

Gp96 is an endoplasmic reticulum chaperone for multiple protein substrates. Its lack in intestinal macrophages of Crohn's disease (CD) patients is correlated with loss of tolerance against the host gut flora. Gp96 has been stablished to be an essential chaperone for Toll-like receptors (TLRs). We studied the impact of gp96-knockdown on TLR-function in macrophages. TLR2 and TLR4 expression was only decreased but not abolished when gp96 was knocked-down in cell lines, whereas in a monocyte/macrophage specific knock-out mouse model (LysMCre) TLR4 was abolished, while TLR2 was still present. Lipopolysaccharide (LPS)-induced NF-κB activation was still observed in the absence of gp96, and gp96-deficient macrophages were able to up-regulate surface TLR4 upon LPS treatment, suggesting that there is another chaperone involved in the folding of TLR4 upon stress responses. Moreover, LPS-dependent pro-inflammatory cytokines were still expressed, although to a lesser extent in the absence of gp96, which reinforces the fact that gp96 is involved in regulating signaling cascades downstream of TLR4 are impaired upon loss of gp96. In addition, we have also found a reduced phosphorylation of ERK and p38 kinases and an impaired response upon CSF1R activation in gp96 deficient macrophages. Our findings indicate that the loss of gp96 not only impairs TLR4 signaling, but is also associated with a diminished phosphorylation of ERK and mitogen-activated stress kinases resulting in an impaired signalling through several receptors, including CSF1R.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicoproteínas de Membrana/deficiencia , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fosforilación/fisiología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética
18.
J Crohns Colitis ; 12(3): 355-368, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29136128

RESUMEN

BACKGROUND AND AIMS: During active inflammation, intraluminal intestinal pH is decreased in patients with inflammatory bowel disease [IBD]. Acidic pH may play a role in IBD pathophysiology. Recently, proton-sensing G-protein coupled receptors were identified, including GPR4, OGR1 [GPR68], and TDAG8 [GPR65]. We investigated whether GPR4 is involved in intestinal inflammation. METHODS: The role of GPR4 was assessed in murine colitis models by chronic dextran sulphate sodium [DSS] administration and by cross-breeding into an IL-10 deficient background for development of spontaneous colitis. Colitis severity was assessed by body weight, colonoscopy, colon length, histological score, cytokine mRNA expression, and myeloperoxidase [MPO] activity. In the spontaneous Il-10-/- colitis model, the incidence of rectal prolapse and characteristics of lamina propria leukocytes [LPLs] were analysed. RESULTS: Gpr4-/- mice showed reduced body weight loss and histology score after induction of chronic DSS colitis. In Gpr4-/-/Il-10-/- double knock-outs, the onset and progression of rectal prolapse were significantly delayed and mitigated compared with Gpr4+/+/Il-10-/- mice. Double knock-out mice showed lower histology scores, MPO activity, CD4+ T helper cell infiltration, IFN-γ, iNOS, MCP-1 [CCL2], CXCL1, and CXCL2 expression compared with controls. In colon, GPR4 mRNA was detected in endothelial cells, some smooth muscle cells, and some macrophages. CONCLUSIONS: Absence of GPR4 ameliorates colitis in IBD animal models, indicating an important regulatory role in mucosal inflammation, thus providing a new link between tissue pH and the immune system. Therapeutic inhibition of GPR4 may be beneficial for the treatment of IBD.


Asunto(s)
Colitis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Prolapso Rectal/etiología , Animales , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/patología , Sulfato de Dextran , Células Endoteliales/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Interferón gamma/metabolismo , Interleucina-10/genética , Mucosa Intestinal/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Protones , ARN Mensajero/metabolismo , Prolapso Rectal/genética , Linfocitos T Colaboradores-Inductores/patología
19.
Carcinogenesis ; 38(12): 1157-1166, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-28968883

RESUMEN

Evolution led to an essential symbiotic relationship between the host and commensal microbiota, regulating physiological functions including inflammation and immunity. This equilibrium can be disturbed by environmental factors such as lifestyle, diet or antibiotic pressure, contributing to create a dysbiosis. There is much evidence about the gut microbiota's contribution to carcinogenesis, involving pro-inflammatory and immunosuppressive signals. At the same time, it seems to be increasingly clear that commensal microbes can modulate cancer therapy efficacy and safety, in particular, innovating treatments as immune checkpoint inhibitors. In this review, we discuss how the microbiota can promote digestive tract carcinogenesis, responsiveness to cancer therapeutics and cancer-associated complications.


Asunto(s)
Disbiosis/complicaciones , Microbioma Gastrointestinal , Neoplasias Gastrointestinales/microbiología , Animales , Humanos
20.
Nat Commun ; 8(1): 98, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740109

RESUMEN

Hypoxia regulates autophagy and nucleotide-binding oligomerization domain receptor, pyrin domain containing (NLRP)3, two innate immune mechanisms linked by mutual regulation and associated to IBD. Here we show that hypoxia ameliorates inflammation during the development of colitis by modulating autophagy and mammalian target of rapamycin (mTOR)/NLRP3 pathway. Hypoxia significantly reduces tumor necrosis factor α, interleukin (IL)-6 and NLRP3 expression, and increases the turnover of the autophagy protein p62 in colon biopsies of Crohn's disease patients, and in samples from dextran sulfate sodium-treated mice and Il-10 -/- mice. In vitro, NF-κB signaling and NLRP3 expression are reduced through hypoxia-induced autophagy. We also identify NLRP3 as a novel binding partner of mTOR. Dimethyloxalylglycine-mediated hydroxylase inhibition ameliorates colitis in mice, downregulates NLRP3 and promotes autophagy. We suggest that hypoxia counteracts inflammation through the downregulation of the binding of mTOR and NLRP3 and activation of autophagy.Hypoxia and HIF-1α activation are protective in mouse models of colitis, and the latter regulates autophagy. Here Cosin-Roger et al. show that hypoxia ameliorates intestinal inflammation in Crohn's patients and murine colitis models by inhibiting mTOR/NLRP3 pathway and promoting autophagy.


Asunto(s)
Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/fisiología , Colitis/inducido químicamente , Sulfato de Dextran/toxicidad , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...