Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2760: 267-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468094

RESUMEN

In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.


Asunto(s)
Edición Génica , Paenibacillus polymyxa , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Paenibacillus polymyxa/genética , Genoma
2.
Microb Biotechnol ; 17(3): e14438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529712

RESUMEN

Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L-1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.


Asunto(s)
Butanoles , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Carbono/metabolismo , NADP/metabolismo , Oxidación-Reducción , Paenibacillus/genética , Ingeniería Metabólica
3.
Appl Environ Microbiol ; 88(11): e0016422, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35588272

RESUMEN

Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.


Asunto(s)
Paenibacillus polymyxa , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Mutación Puntual
4.
ACS Synth Biol ; 11(1): 77-84, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34914351

RESUMEN

The use of molecular tools based on the clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems has rapidly advanced genetic engineering. These molecular biological tools have been applied for different genetic engineering purposes in multiple organisms, including the quite rarely explored Paenibacillus polymyxa. However, only limited studies on large cluster deletion and multiplex genome editing have been described for this highly interesting and versatile bacterium. Here, we demonstrate the utilization of a Cas9-based system to realize targeted deletions of four biosynthetic gene clusters in the range of 12-41 kb by the use of a single targeting sgRNA. Furthermore, we also harnessed the system for multiplex editing of genes and large genomic regions. Multiplex deletion was achieved with more than 80% efficiency, while simultaneous integration at two distantly located sites was obtained with 58% efficiency. The findings reported in this study are anticipated to accelerate future research in P. polymyxa and related species.


Asunto(s)
Edición Génica , Paenibacillus polymyxa , Sistemas CRISPR-Cas/genética , Ingeniería Genética , Paenibacillus polymyxa/genética
5.
Appl Microbiol Biotechnol ; 105(8): 2981-2990, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33754170

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome engineering and related technologies have revolutionized biotechnology over the last decade by enhancing the efficiency of sophisticated biological systems. Cas12a (Cpf1) is an RNA-guided endonuclease associated to the CRISPR adaptive immune system found in many prokaryotes. Contrary to its more prominent counterpart Cas9, Cas12a recognizes A/T rich DNA sequences and is able to process its corresponding guide RNA directly, rendering it a versatile tool for multiplex genome editing efforts and other applications in biotechnology. While Cas12a has been extensively used in eukaryotic cell systems, microbial applications are still limited. In this review, we highlight the mechanistic and functional differences between Cas12a and Cas9 and focus on recent advances of applications using Cas12a in bacterial hosts. Furthermore, we discuss advantages as well as current challenges and give a future outlook for this promising alternative CRISPR-Cas system for bacterial genome editing and beyond. KEY POINTS: • Cas12a is a powerful tool for genome engineering and transcriptional perturbation • Cas12a causes less toxic side effects in bacteria than Cas9 • Self-processing of crRNA arrays facilitates multiplexing approaches.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Bacterias/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA