Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(11): e0278419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36449554

RESUMEN

Potent broad-spectrum antiviral agents are urgently needed to combat existing and emerging viral infections. This is particularly important considering that vaccine development is a costly and time consuming process and that viruses constantly mutate and render the vaccine ineffective. Antimicrobial peptides (AMP), such as bacteriocins, are attractive candidates as antiviral agents against enveloped viruses. One of these bacteriocins is PLNC8 αß, which consists of amphipathic peptides with positive net charges that display high affinity for negatively charged pathogen membrane structures, including phosphatidylserine rich lipid membranes of viral envelopes. Due to the morphological and physiological differences between viral envelopes and host cell plasma membranes, PLNC8 αß is thought to have high safety profile by specifically targeting viral envelopes without effecting host cell membranes. In this study, we have tested the antiviral effects of PLNC8 αß against the flaviviruses Langat and Kunjin, coronavirus SARS-CoV-2, influenza A virus (IAV), and human immunodeficiency virus-1 (HIV-1). The concentration of PLNC8 αß that is required to eliminate all the infective virus particles is in the range of nanomolar (nM) to micromolar (µM), which is surprisingly efficient considering the high content of cholesterol (8-35%) in their lipid envelopes. We found that viruses replicating in the endoplasmic reticulum (ER)/Golgi complex, e.g. SARS-CoV-2 and flaviviruses, are considerably more susceptible to PLNC8 αß, compared to viruses that acquire their lipid envelope from the plasma membrane, such as IAV and HIV-1. Development of novel broad-spectrum antiviral agents can significantly benefit human health by rapidly and efficiently eliminating infectious virions and thereby limit virus dissemination and spreading between individuals. PLNC8 αß can potentially be developed into an effective and safe antiviral agent that targets the lipid compartments of viral envelopes of extracellular virions, more or less independent of virus antigenic mutations, which faces many antiviral drugs and vaccines.


Asunto(s)
Bacteriocinas , COVID-19 , Virus de la Encefalitis Transmitidos por Garrapatas , VIH-1 , Virus de la Influenza A , Humanos , Antivirales/farmacología , Bacteriocinas/farmacología , Lípidos , SARS-CoV-2
2.
Vaccines (Basel) ; 10(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36298532

RESUMEN

Flaviviruses are a threat to public health and can cause major disease outbreaks. Tick-borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment available, vaccination remains the best protective measure against TBE. Currently available TBE vaccines are based on formalin-inactivated virus produced in cell culture. These vaccines must be delivered by intramuscular injection, have a burdensome immunization schedule, and may exhibit vaccine failure in certain populations. This project aimed to develop an edible TBE vaccine to trigger a stronger immune response through oral delivery of viral antigens to mucosal surfaces. We demonstrated successful expression and post-translational processing of flavivirus structural proteins which then self-assembled to form virus-like particles in Nicotiana benthamiana. We performed oral toxicity tests in mice using various plant species as potential bioreactors and evaluated the immunogenicity of the resulting edible vaccine candidate. Mice immunized with the edible vaccine candidate did not survive challenge with TBE virus. Interestingly, immunization of female mice with a commercial TBE vaccine can protect their offspring against TBE virus infection.

3.
Pathogens ; 11(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215177

RESUMEN

Removal of genes coding for major parts of capsid (C), premembrane (prM), and envelope (E) proteins on the flavivirus genome aborts the production of infectious virus particles where the remaining genome forms a replicon that retains replicability in host cells. The C-prM-E proteins can also be expressed in trans with the flavivirus replicons to generate single-round infectious replicon virus-like particles (RVPs). In this study, we characterized the use of RVPs based on the Kunjin strain of WNV (WNVKUN) as a putative WNV vaccine candidate. In addition, the WNVKUN C-prM-E genes were substituted with the Crimean-Congo hemorrhagic fever virus (CCHFV) genes encoding the glycoproteins Gn and Gc to generate a WNVKUN replicon expressing the CCHFV proteins. To generate RVPs, the WNVKUN replicon was transfected into a cell line expressing the WNVKUN C-prM-E. Using immunoblotting and immunofluorescence assays, we showed that the replicon can express the CCHFV Gn and Gc proteins and the RVPs can transduce cells to express WNVKUN proteins and the CCHFV Gn and Gc proteins. Our study also revealed that these RVPs have potential as a vaccine platform with low risk of recombination as it infects cells only in one cycle. The immunization of mice with the RVPs resulted in high seroconversion to both WNV E and NS1 but limited seroconversion to CCHFV Gn and Gc proteins. Interestingly, we found that there was enhanced production of WNV E, NS1 antibodies, and neutralizing antibodies by the inclusion of CCHFV Gc and Gn into WNVKUN RVPs. Thus, this study indicates a complementary effect of the CCHFV Gn and Gc proteins on the immunogenicity by WNVKUN RVPs, which may be applied to develop a future vaccine against the WNV.

4.
J Virol ; 96(3): e0162421, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851141

RESUMEN

Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Flavivirus/fisiología , Interacciones Huésped-Patógeno , Ubiquitinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Infecciones por Flavivirus/transmisión , Humanos , Modelos Biológicos , Proteolisis , Garrapatas/virología , Replicación Viral
5.
Viruses ; 13(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206552

RESUMEN

The endoplasmic reticulum (ER) of eukaryotic cells is a dynamic organelle, which undergoes continuous remodeling. At the three-way tubular junctions of the ER, the lunapark (LNP) protein acts as a membrane remodeling factor to stabilize these highly curved membrane junctions. In addition, during flavivirus infection, the ER membrane is invaginated to form vesicles (Ve) for virus replication. Thus, LNP may have roles in the generation or maintenance of the Ve during flavivirus infection. In this study, our aim was to characterize the functions of LNP during flavivirus infection and investigate the underlying mechanisms of these functions. To specifically study virus replication, we generated cell lines expressing replicons of West Nile virus (Kunjin strain) or Langat virus. By using these replicon platforms and electron microscopy, we showed that depletion of LNP resulted in reduced virus replication, which is due to its role in the generation of the Ve. By using biochemical assays and high-resolution microscopy, we found that LNP is recruited to the Ve and the protein interacts with the nonstructural protein (NS) 4B. Therefore, these data shed new light on the interactions between flavivirus and host factors during viral replication.


Asunto(s)
Flavivirus/química , Flavivirus/fisiología , Proteínas de la Membrana/genética , Replicación Viral/genética , Células A549 , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Retículo Endoplásmico/virología , Flavivirus/clasificación , Flavivirus/genética , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología
6.
Microorganisms ; 8(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260425

RESUMEN

Kunjin virus (KUNV) is an attenuated strain of the severe neurotropic West Nile virus (WNV). The virus has a single-strand positive-sense RNA genome that encodes a polyprotein. Following gene expression, the polyprotein is cleaved into structural proteins for viral packaging and nonstructural proteins for viral replication and expression. Removal of the structural genes generate subgenomic replicons that maintain replication capacity. Co-expression of these replicons with the viral structural genes produces reporter virus-like particles (RVPs) which infect cells in a single round. In this study, we aimed to develop a system to generate multivalent RVPs based on KUNV to elicit an immune response against different viruses. We selected the Ebola virus (EBOV) glycoprotein (GP) and the matrix protein (VP40) genes, as candidates to be delivered by KUNV RVPs. Initially, we enhanced the production of KUNV RVPs by generating a stable cell line expressing the KUNV packaging system comprising capsid, precursor membrane, and envelope. Transfection of the DNA-based KUNV replicon into this cell line resulted in an enhanced RVP production. The replicon was expressed in the stable cell line to produce the RVPs that allowed the delivery of EBOV GP and VP40 genes into other cells. Finally, we immunized BALB/cN mice with RVPs, resulting in seroconversion for EBOV GP, EBOV VP40, WNV nonstructural protein 1, and WNV E protein. Thus, our study shows that KUNV RVPs may function as a WNV vaccine candidate and RVPs can be used as a gene delivery system in the development of future EBOV vaccines.

7.
Viruses ; 10(6)2018 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914165

RESUMEN

Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).


Asunto(s)
Infecciones del Sistema Nervioso Central/patología , Infecciones del Sistema Nervioso Central/virología , Flavivirus/genética , Flavivirus/patogenicidad , Garrapatas/virología , Factores de Virulencia/genética , Animales , Flavivirus/aislamiento & purificación , Humanos
8.
Sci Rep ; 6: 39265, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27982069

RESUMEN

The tick-borne encephalitis virus (TBEV) is a flavivirus transmitted to humans, usually via tick bites. The virus causes tick-borne encephalitis (TBE) in humans, and symptoms range from mild flu-like symptoms to severe and long-lasting sequelae, including permanent brain damage. It has been suggested that within the population of viruses transmitted to the mammalian host, quasispecies with neurotropic properties might become dominant in the host resulting in neurological symptoms. We previously demonstrated the existence of TBEV variants with variable poly(A) tracts within a single blood-fed tick. To characterize the role of the poly(A) tract in TBEV replication and virulence, we generated infectious clones of Torö-2003 with the wild-type (A)3C(A)6 sequence (Torö-6A) or with a modified (A)3C(A)38 sequence (Torö-38A). Torö-38A replicated poorly compared to Torö-6A in cell culture, but Torö-38A was more virulent than Torö-6A in a mouse model of TBE. Next-generation sequencing of TBEV genomes after passaging in cell culture and/or mouse brain revealed mutations in specific genomic regions and the presence of quasispecies that might contribute to the observed differences in virulence. These data suggest a role for quasispecies development within the poly(A) tract as a virulence determinant for TBEV in mice.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Poli A/genética , Regiones no Traducidas 3'/genética , Células A549 , Animales , Secuencia de Bases , Chlorocebus aethiops , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/patología , Encefalitis Transmitida por Garrapatas/veterinaria , Encefalitis Transmitida por Garrapatas/virología , Genoma Viral , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/metabolismo , ARN Viral/química , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Alineación de Secuencia , Garrapatas/virología , Células Vero , Virulencia , Replicación Viral
9.
Viruses ; 8(9)2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27626437

RESUMEN

Tick-borne flaviviruses (TBFVs) cause a broad spectrum of disease manifestations ranging from asymptomatic to mild febrile illness and life threatening encephalitis. These single-stranded positive-sense (ss(+)) RNA viruses are naturally maintained in a persistent infection of ixodid ticks and small-medium sized mammals. The development of cell lines from the ixodid ticks has provided a valuable surrogate system for studying the biology of TBFVs in vitro. When we infected ISE6 cells, an Ixodes scapularis embryonic cell line, with Langat virus (LGTV) we observed that the infection proceeded directly into persistence without any cytopathic effect. Analysis of the viral genome at selected time points showed that no defective genomes were generated during LGTV persistence by 10 weeks of cell passage. This was in contrast to LGTV persistence in 293T cells in which defective viral genomes are detectable by five weeks of serial cell passage. We identified two synonymous nucleotide changes i.e., 1893A→C (29% of 5978 reads at 12 h post infection (hpi)) and 2284T→A (34% of 4191 reads at 12 hpi) in the region encoding for the viral protein E. These results suggested that the mechanisms supporting LGTV persistence are different between tick and mammalian cells.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Genoma Viral , Ixodes/virología , Animales , Línea Celular , Virus Defectuosos/genética , Mamíferos , Mutación Puntual , Pase Seriado , Garrapatas
10.
mBio ; 6(3): e00614, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26045539

RESUMEN

UNLABELLED: We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. IMPORTANCE: Tick-borne flaviviruses are significant infectious agents that cause serious disease and death in humans worldwide. Infections are characterized by severe neurological symptoms, such as meningitis and encephalitis. A high percentage of people who get infected and recuperate from the acute phase of infection continue to suffer from chronic debilitating neurological sequelae, most likely as a result of nervous tissue damage, viral persistence, or both. However, little is known about mechanisms of viral persistence. Therefore, we undertook studies to investigate the persistence of Langat virus, a member of the tick-borne flavivirus group, in a mammalian cell line. Using next-generation sequencing, we determined that defective viral genomes do not play a role in the initiation of persistence, but their occurrence seems to be nonstochastic and could play a role in the maintenance of viral persistence via the expression of a novel envelope-NS1 fusion protein.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Células Epiteliales/virología , Virus Defectuosos/genética , Virus Defectuosos/aislamiento & purificación , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Células HEK293 , Humanos , Eliminación de Secuencia , Replicación Viral
11.
PLoS One ; 9(7): e103264, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25058476

RESUMEN

The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3' non-coding region (3'NCR). A different genomic structure was found in the 3'NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3'NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A)3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A)3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the re-sequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/clasificación , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/virología , Variación Genética , Garrapatas/virología , Anciano , Animales , Secuencia de Bases , Niño , Encefalitis Transmitida por Garrapatas/sangre , Humanos , Masculino , Datos de Secuencia Molecular , Ninfa , Filogenia , ARN Viral/análisis , Análisis de Secuencia de ARN , Especificidad de la Especie
12.
Pathog Dis ; 71(2): 137-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24737600

RESUMEN

In nature, vector-borne flaviviruses are persistently cycled between either the tick or mosquito vector and small mammals such as rodents, skunks, and swine. These viruses account for considerable human morbidity and mortality worldwide. Increasing and substantial evidence of viral persistence in humans, which includes the isolation of RNA by RT-PCR and infectious virus by culture, continues to be reported. Viral persistence can also be established in vitro in various human, animal, arachnid, and insect cell lines in culture. Although some research has focused on the potential roles of defective virus particles, evasion of the immune response through the manipulation of autophagy and/or apoptosis, the precise mechanism of flavivirus persistence is still not well understood. We propose additional research for further understanding of how viral persistence is established in different systems. Avenues for additional studies include determining whether the multifunctional flavivirus protein NS5 has a role in viral persistence, the development of relevant animal models of viral persistence, and investigating the host responses that allow vector-borne flavivirus replication without detrimental effects on infected cells. Such studies might shed more light on the viral-host relationships and could be used to unravel the mechanisms for establishment of persistence.


Asunto(s)
Portador Sano/virología , Infecciones por Flavivirus/virología , Flavivirus/fisiología , Interacciones Huésped-Patógeno , Animales , Modelos Animales de Enfermedad , Humanos
13.
Eur J Cell Biol ; 92(6-7): 213-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23973368

RESUMEN

Neurite outgrowth is mediated by dynamic changes of the cytoskeleton and is largely controlled by Rho GTPases and their regulators. Here, we show that the polarity protein Scribble controls PC12 cell neurite outgrowth in response to nerve growth factor. Scribble knockdown decreases neurite numbers and increases neurite length. This effect is linked to TrkA the cognate receptor for NGF as pharmacological inhibition of phosphorylated TrkA (pTrkA) reduces Scribble expression. Moreover, Scribble forms a complex with the MAPK components ERK1/2 in a growth factor dependent manner. In RNAi experiments where Scribble expression is efficiently depleted sustained ERK1/2 phosphorylation is reduced. Conversely, siRNA with intermediate Scribble silencing efficiency fails to match this effect indicating that ERK1/2 activation depends on basic Scribble protein levels. Finally, Scribble translocates to the plasma membrane in response to growth factor where it complexes with HRas and Rac1 suggesting that the phenotype activated by loss of Scribble may be a result of altered GTPase activity. Together, these results demonstrate a novel role for Scribble in neurite outgrowth of PC12 cells.


Asunto(s)
Neuritas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Procesos de Crecimiento Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Proteínas Oncogénicas , Células PC12 , Unión Proteica , Transporte de Proteínas , Ratas , Receptor trkA/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras
14.
Virus Res ; 169(1): 54-62, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796133

RESUMEN

The flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth. To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins.


Asunto(s)
Secuencias de Aminoácidos , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Interacciones Huésped-Patógeno , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Células COS , Chlorocebus aethiops , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Genes Reporteros , Luciferasas de Luciérnaga/análisis , Luciferasas de Luciérnaga/genética , Virus del Nilo Occidental/patogenicidad , Virus del Nilo Occidental/fisiología
15.
PLoS One ; 7(2): e31981, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384119

RESUMEN

The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Flavivirus/genética , Recombinación Homóloga/genética , Recombinación Genética , Animales , Teorema de Bayes , Cápside , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/genética , Evolución Molecular , Flavivirus/metabolismo , Genoma , Humanos , Funciones de Verosimilitud , Modelos Estadísticos , Filogenia , Garrapatas , Factores de Tiempo
16.
Vector Borne Zoonotic Dis ; 11(6): 649-58, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21254926

RESUMEN

Tick-borne encephalitis virus (TBEV) is a flavivirus with major impact on global health. The geographical TBEV distribution is expanding, thus making it pivotal to further characterize the natural virus populations. In this study, we completed the earlier partial sequencing of a TBEV pulled out of a pool of RNA extracted from 115 ticks collected on Torö in the Stockholm archipelago. The total RNA was sufficient for all sequencing of a TBEV genome (Torö-2003), without conventional enrichment procedures such as cell culturing or suckling mice amplification. To our knowledge, this is the first time that the genome of TBEV has been sequenced directly from an arthropod reservoir. The Torö-2003 sequence has been characterized and compared with other TBE viruses. In silico analyses of secondary RNA structures formed by the two untranslated regions revealed a temperature-sensitive structural shift between a closed replicative form and an open AUG accessible form, analogous to a recently described bacterial thermoswitch. Additionally, novel phylogenetic conserved structures were identified in the variable part of the 3'-untranslated region, and their sequence and structure similarity when compared with earlier identified structures suggests an enhancing function on virus replication and translation. We propose that the thermo-switch mechanism may explain the low TBEV prevalence often observed in environmentally sampled ticks. Finally, we were able to detect variations that help in the understanding of virus adaptations to varied environmental temperatures and mammalian hosts through a comparative approach that compares RNA folding dynamics between strains with different mammalian cell passage histories.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Ixodes/virología , ARN Viral/genética , Replicación Viral/genética , Animales , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/virología , Ratones , Temperatura , Replicación Viral/fisiología
17.
Mol Cell Neurosci ; 44(3): 260-71, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20363326

RESUMEN

Tick-borne encephalitis virus (TBEV) causes extensive CNS disease in humans known as TBE, however, relatively little is known of the molecular mechanisms for its progress. Here, we now show that TBEV produces defects in neuronal development of PC12 cells through a function of the viral NS5 protein. The methyltransferase domain of NS5 is critical and sufficient for restriction of nerve growth factor induced neurite outgrowth. This effect is reversed by expression of NS5 mutants unable to bind Scribble and unexpectedly, in Scribble depleted cells with binding-competent NS5. Furthermore, we also demonstrate that the Rho GTPase Rac1 and the guanine nucleotide-exchange factor, betaPIX are outcompeted by NS5 for binding to Scribble, linking to effects on neurite outgrowth by TBEV. Together, these findings provide the first experimental evidence that Rac1 and betaPIX are indirect targets of NS5 acting through the multifunctional polarity protein Scribble to oppose neuronal differentiation. In conclusion, our results offer a potential mechanism by which TBEV alters neuronal circuitry and opens new avenues for therapeutic interventions.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Neuritas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Células PC12 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Proteínas Supresoras de Tumor/genética , Proteínas no Estructurales Virales/genética , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...