Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 384(6695): 584-590, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696583

RESUMEN

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22 , Meningomielocele , Animales , Femenino , Humanos , Masculino , Ratones , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/genética , Secuenciación del Exoma , Ácido Fólico/administración & dosificación , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/genética , Meningomielocele/epidemiología , Meningomielocele/genética , Penetrancia , Disrafia Espinal/genética , Riesgo , Proteínas Adaptadoras Transductoras de Señales/genética
3.
Genet Med ; 25(8): 100885, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165955

RESUMEN

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Epilepsia/genética , Epilepsia/patología , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Fenotipo , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética
4.
Front Genet ; 13: 884424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646065

RESUMEN

Fragile X syndrome (FXS) is the most frequent cause of X-linked inherited intellectual disabilities (ID) and the most frequent monogenic form of autism spectrum disorders. It is caused by an expansion of a CGG trinucleotide repeat located in the 5'UTR of the FMR1 gene, resulting in the absence of the fragile X mental retardation protein, FMRP. Other mechanisms such as deletions or point mutations of the FMR1 gene have been described and account for approximately 1% of individuals with FXS. Here, we report a 7-year-old boy with FXS with a de novo deletion of approximately 1.1 Mb encompassing several genes, including the FMR1 and the ASFMR1 genes, and several miRNAs, whose lack of function could result in the observed proband phenotypes. In addition, we also demonstrate that FMR4 completely overlaps with ASFMR1, and there are no sequencing differences between both transcripts (i.e., ASFMR1/FMR4 throughout the article).

5.
Seizure ; 94: 70-73, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34872019

RESUMEN

PURPOSE: To report the effect of the ketogenic diet (KD) on non-convulsive status epilepticus (NCSE) due to Angelman syndrome (AS) in two members of a large Georgian family affected by a novel frameshift variant in the UBE3A gene (NM_000462.3). METHODS: We evaluated two members of this family who were affected with clinical and EEG features of AS. Clinical history with special emphasis on development, seizure type, frequency, and treatment was reviewed. Routine and long-term video EEG monitoring were conducted, particularly during NCSE. A non-fasting inpatient KD protocol was implemented using blended food orally with full administration of 4:1 (fat to non-fat) ratio. Urine ketone bodies (KBs), measured with urine ketone acetone strips readings, reached 150 mg/dL in both patients. RESULTS: Patients had characteristic signs of AS and presented with epilepsy between the age of 2-4 years. As methylation tests were negative, next generation sequencing disclosed a c.2365del variant. For both, NCSE was revealed by cognitive deterioration and did not respond to anti-seizure medication. As recommended, IV pyridoxine, benzodiazepines, and valproic acid were administered, but without success. For both patients, NCSE resolved on the second-third day of KD initiation, before the appearance of ketonuria and resulting in improved communication, mood and sleep. CONCLUSION: KD is safe and effective for the treatment of NCSE due to AS. Resolution before the appearance of ketone bodies points to a possible mechanism of action of KD.


Asunto(s)
Dieta Cetogénica , Estado Epiléptico , Ubiquitina-Proteína Ligasas/genética , Benzodiazepinas , Preescolar , Electroencefalografía , Georgia (República) , Humanos , Estado Epiléptico/dietoterapia , Estado Epiléptico/genética , Ácido Valproico
6.
Sleep Adv ; 3(1): zpac010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37193389

RESUMEN

Study Objectives: To describe early diagnostic clues in Cyclin-Dependent Kinase-Like 5 (CDKL5) refractory encephalopathy, to improve treatment strategies. Methods: We retrospectively studied 35 patients (25 females, 10 males) with CDKL5 gene mutations or deletion, focusing on their early seizure semiology, the electroencephalogram (EEG) pattern, the effect of treatment, and developmental outcome. Results: The first seizures were recognizable and consisted of tonic, then clonic, and spasms phases, occurring in sleep at a median age of 6 weeks. Clusters of spasms were observed in quiet sleep or slow-wave sleep (SWS), with screaming, staring, and arms' extension that mimicked sleep terror in 28 of 35 patients (80%). Programmed awakening prevented these spasms in 9 of 16 patients and small doses of clonazepam given at night improved epilepsy in 14 of 23 patients. Conclusions: Peculiar seizures with spasms starting in SWS are an early diagnostic clue in infants with CDKL5 encephalopathy. Sleep video-EEG polygraphy is an easy tool to disclose these early seizures and epileptic spasms in infants during the first months of life while polysomnography is unlikely to give a contribution at that early age. While conventional antiepileptic treatment and corticosteroids are poorly, transiently, or not efficient, therapeutic strategy used for sleep terror could help, although the mechanism of spasms generation in SWS needs to be elucidated.

7.
Epilepsy Behav ; 111: 107187, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32603808

RESUMEN

INTRODUCTION: Sodium voltage-gated channel alpha subunit 2 (SCN2A) gene encodes the Nav1.2 subunit of voltage-gated sodium channel in pyramidal neurons. SCN2A gain-of-function mutations are identified more and more often with gene panels and whole exome sequencing. Phenotype ranges from benign neonatal or infantile seizures to severe epileptic encephalopathy. Although large series of patients targeting genetic background point out two main phenotypes with SCN2A encephalopathy, Ohtahara syndrome and malignant migrating partial seizures in infancy (EMPSI), we noticed that in fact, a peculiar clinical and electroencephalogram (EEG) sequence distinct from these syndromes should suggest the diagnosis early. PATIENTS AND METHODS: We report three new cases with de novo SCN2A mutations - 166237617C>A p.(Asp1487Glu), c.407T>G p.(Met136Arg), and c.4633A>G p.(Met1545Val) - diagnosed by direct sequencing or genes panel, their follow-up ranging from 4 to 5 years. RESULTS: For all three patients, seizures started at two days of life and consisted of apnea and cyanosis with partial clonic or tonic, alternating on both sides with, up to 100/day, evolving to generalized tonic-clonic seizures (GTCS) and epileptic spasms by three months. First EEG showed a discontinuous pattern, evolving to multifocal spikes, by 3 (two patients) and 6 months (one). Seizure frequency decreased progressively by the middle or end of the first year of life. Only less frequent GTCS persisted during the second year of life for two patients. Improvement was observed in two patients with sodium channel blocker (phenytoin) used at age of 1 month for one patient and at 2 years for another one. All patients remained with severe psychomotor delay. DISCUSSION: All three infants share a condition different from Ohtahara syndrome in which tonic spasms predominate and suppression-burst pattern is obvious, and from EMPSI, in which partial migrating discharges involve successively the various parts of the brain including occipital regions with oculoclonic seizures, but there is neither discontinuous pattern nor therapeutic response to sodium channel blockers. CONCLUSION: Neonatal SCN2A encephalopathy has a recognizable phenotype starting soon after birth with alternating partial motor seizures evolving to infantile spasms and a discontinuous EEG pattern. Seizures improve spontaneously in the first year of life. This electroclinical sequence should indicate the search of SCN2A mutation and suggest the administration of sodium channel blockers.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2/genética , Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Niño , Preescolar , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Femenino , Humanos , Recién Nacido , Masculino , Fenitoína/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Espasmos Infantiles/tratamiento farmacológico
8.
Epilepsy Behav ; 94: 308-311, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30898514

RESUMEN

Eight patients, seven girls and one boy, had CDKL5 gene mutation, duplication, or deletion. Epileptic spasms started at a mean age of 3.5 months (range = 4 weeks-8 months). In five cases, tonic seizures preceded spasms at a median age of 6 weeks. In one patient who started at 8 months, spasms had a component of terror on awakening, reminding sleep terror. In two patients, electroencephalogram polygraphy of a so-called tonic seizure revealed that the tonic phase was followed by an overlooked clonic phase and then by a cluster of spasms during which each spasm was preceded by a brief clonic jerk revealed by electromyography. This sequence is rather particular and can be an early diagnostic clue. Progressive transition from this seizure type to epileptic spasms in clusters seems to result from increasing expression of the CDKL5 gene, as the child grows older. Five patients responded to the combination of vigabatrin and zonisamide.


Asunto(s)
Síndromes Epilépticos/fisiopatología , Convulsiones/fisiopatología , Espasmo/fisiopatología , Espasmos Infantiles/fisiopatología , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Quimioterapia Combinada , Electroencefalografía , Electromiografía , Síndromes Epilépticos/complicaciones , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Proteínas Serina-Treonina Quinasas/genética , Convulsiones/etiología , Espasmo/etiología , Espasmos Infantiles/complicaciones , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética , Vigabatrin/uso terapéutico , Zonisamida/uso terapéutico
9.
Nat Genet ; 50(8): 1093-1101, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013181

RESUMEN

Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between ß-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect ß-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Movimiento Celular/genética , Corteza Cerebral/fisiología , Neuronas/patología , alfa Catenina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Embrión de Mamíferos , Genoma Humano , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Linaje , alfa Catenina/metabolismo
10.
Gene ; 512(1): 70-5, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23064044

RESUMEN

Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene.


Asunto(s)
Análisis Mutacional de ADN/métodos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Exones , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA