Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 11(12): 7927-7945, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188862

RESUMEN

Wild bees are threatened by multiple interacting stressors, such as habitat loss, land use change, parasites, and pathogens. However, vineyards with vegetated inter-rows can offer high floral resources within viticultural landscapes and provide foraging and nesting habitats for wild bees. Here, we assess how vineyard management regimes (organic vs. conventional; inter-row vegetation management) and landscape composition determine the inter-row plant and wild bee assemblages, as well as how these variables relate to functional traits in 24 Austrian and 10 South African vineyards. Vineyards had either permanent vegetation cover in untilled inter-rows or temporary vegetation cover in infrequently tilled inter-rows. Proportion of seminatural habitats (e.g., fallows, grassland, field margins) and woody structures (e.g., woodlots, single trees, tree rows) were used as proxies for landscape composition and mapped within 500-m radius around the study vineyards. Organic vineyard management increased functional richness (FRic) of wild bees and flowering plants, with woody structures marginally increasing species richness and FRic of wild bees. Wild bee and floral traits were differently associated across the countries. In Austria, several bee traits (e.g., lecty, pollen collection type, proboscis length) were associated with flower color and symmetry, while in South African vineyards, only bees' proboscis length was positively correlated with floral traits characteristic of Asteraceae flowers (e.g., ray-disk morphology, yellow colors). Solitary bee species in Austria benefitted from infrequent tillage, while ground nesting species preferred inter-rows with undisturbed soils. Higher proportions of woody structures in surrounding landscapes resulted in less solitary and corbiculate bees in Austria, but more aboveground nesting species in South Africa. In both countries, associations between FRic of wild bees and flowering plants were positive both in organic and in conventional vineyards. We recommend the use of diverse cover crop seed mixtures to enhance plant flowering diversity in inter-rows, to increase wild bee richness in viticultural landscapes.

2.
Insects ; 12(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924274

RESUMEN

Several Prosoeca (Nemestinidae) species use a greatly elongated proboscis to drink nectar from long-tubed flowers. We studied morphological adaptations for nectar uptake of Prosoecamarinusi that were endemic to the Northern Cape of South Africa. Our study site was a small isolated area of semi-natural habitat, where the long-tubed flowers of Babiana vanzijliae (Iridaceae) were the only nectar source of P. marinusi, and these flies were the only insects with matching proboscis. On average, the proboscis measured 32.63 ± 2.93 mm in length and less than 0.5 mm in diameter. The short labella at the tip are equipped with pseudotracheae that open at the apical margin, indicating that nectar is extracted out of the floral tube with closed labella. To quantify the available nectar resources, measurements of the nectar volume were taken before the flies were active and after observed flower visits. On average, an individual fly took up approximately 1 µL of nectar per flower visit. The measured nectar quantities and the flower geometry allowed estimations of the nectar heights and predictions of necessary proboscis lengths to access nectar in a range of flower tube lengths.

3.
Evolution ; 75(2): 437-449, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33314060

RESUMEN

Exaggerated traits of pollinators have fascinated biologists for centuries. To understand their evolution, and their role in coevolutionary relationships, an essential first step is to understand how traits scale allometrically with body size, which may reveal underlying developmental constraints. Few pollination studies have examined how traits can adaptively diverge despite allometric constraints. Here, we present a comparative study of narrow-sense static and evolutionary allometry on foreleg length and body size of oil-collecting bees. Concurrently, we assess the relationship between scaling parameters and spur lengths of oil-secreting host flowers. Across species and populations, we found low variation in static slopes (nearly all <1), possibly related to stabilizing selection, but the static intercept varied substantially generating an evolutionary allometry steeper than static allometry. Variation in static intercepts was explained by changes in body size (∼28% species; ∼68% populations) and spur length (remaining variance: ∼36% species; ∼94% populations). The intercept-spur length relationship on the arithmetic scale was positive but forelegs did not track spur length perfectly in a one-to-one relationship. Overall, our study provides new insights on how phenotypic evolution in the forelegs of oil-collecting bees is related to the variability of the allometric intercept and adaptation to host plants.


Asunto(s)
Adaptación Biológica , Abejas/anatomía & histología , Coevolución Biológica , Tamaño Corporal , Selección Genética , Animales , Conducta Animal , Extremidades/anatomía & histología , Femenino , Flores , Polinización , Simbiosis
4.
PLoS One ; 14(6): e0217839, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31173614

RESUMEN

An appreciation of body size allometry is central for understanding insect pollination ecology. A recent model utilises allometric coefficients for five of the seven extant bee families (Apoidea: Anthophila) to include crucial but difficult-to-measure traits, such as proboscis length, in ecological and evolutionary studies. Melittidae were not included although they are important pollinators in South Africa where they comprise an especially rich and morphologically diverse fauna. We measured intertegular distance (correlated with body size) and proboscis length of 179 specimens of 11 species from three genera of Melittidae. With the inclusion of Melittidae, we tested the between family differences in the allometric scaling coefficients. AIC model selection was used to establish which factors provide the best estimate of proboscis length. We explored a hypothesis that has been proposed in the literature, but which has not been tested, whereby body and range sizes of bees are correlated with rainfall regions. We tested this by using body size measurements of 2109 museum specimens from 56 species of Melittidae and applied the model coefficients to estimate proboscis length and foraging distance. Our results from testing differences across bee families show that with the addition of Melittidae, we retained the overall pattern of significant differences in the scaling coefficient among Apoidea, with our model explaining 98% of the variance in species-level means for proboscis length. When testing the relationship between body size and rainfall region we found no relationship for South African Melittidae. Overall, this study has added allometric scaling coefficients for an important bee family and shown the applicability of using these coefficients when linked with museum specimens to test ecological hypothesis.


Asunto(s)
Abejas/anatomía & histología , Conducta Alimentaria , Museos , Animales , Análisis de los Mínimos Cuadrados , Lluvia , Análisis de Regresión
5.
PeerJ ; 6: e5654, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30280031

RESUMEN

Most pollination ecosystem services studies have focussed on wild pollinators and their dependence on natural floral resources adjacent to crop fields. However, managed pollinators depend on a mixture of floral resources that are spatially separated from the crop field. Here, we consider the supporting role these resources play as an ecosystem services provider to quantify the use and availability of floral resources, and to estimate their relative contribution to support pollination services of managed honeybees. Beekeepers supplying pollination services to the Western Cape deciduous fruit industry were interviewed to obtain information on their use of floral resources. For 120 apiary sites, we also analysed floral resources within a two km radius of each site based on geographic data. The relative availability of floral resources at sites was compared to regional availability. The relative contribution of floral resources-types to sustain managed honeybees was estimated. Beekeepers showed a strong preference for eucalypts and canola. Beekeepers selectively placed more hives at sites with eucalypt and canola and less with natural vegetation. However, at the landscape-scale, eucalypt was the least available resource, whereas natural vegetation was most common. Based on analysis of apiary sites, we estimated that 700,818 ha of natural vegetation, 73,910 ha of canola fields, and 10,485 ha of eucalypt are used to support the managed honeybee industry in the Western Cape. Whereas the Cape managed honeybee system uses a bee native to the region, alien plant species appear disproportionately important among the floral resources being exploited. We suggest that an integrated approach, including evidence from interview and landscape data, and fine-scale biological data is needed to study floral resources supporting managed honeybees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...