Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(18): 6955-6969, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37099760

RESUMEN

Upon exploration of the chemistry of the combination of ruthenium/arene with anthraquinone alizarin (L), three new complexes with the general formulas [Ru(L)Cl(η6-p-cymene)] (C1), [Ru(L)(η6-p-cymene)(PPh3)]PF6 (C2), and [Ru(L)(η6-p-cymene)(PEt3)]PF6 (C3) were synthesized and characterized using spectroscopic techniques (mass, IR, and 1D and 2D NMR), molar conductivity, elemental analysis, and X-ray diffraction. Complex C1 exhibited fluorescence, such as free alizarin, while in C2 and C3, the emission was probably quenched by monophosphines and the crystallographic data showed that hydrophobic interactions are predominant in intermolecular contacts. The cytotoxicity of the complexes was evaluated in the MDA-MB-231 (triple-negative breast cancer), MCF-7 (breast cancer), and A549 (lung) tumor cell lines and MCF-10A (breast) and MRC-5 (lung) nontumor cell lines. Complexes C1 and C2 were more selective to the breast tumor cell lines, and C2 was the most cytotoxic (IC50 = 6.5 µM for MDA-MB-231). In addition, compound C1 performs a covalent interaction with DNA, while C2 and C3 present only weak interactions; however, internalization studies by flow cytometry and confocal microscopy showed that complex C1 does not accumulate in viable MDA-MB-231 cells and is detected in the cytoplasm only after cell permeabilization. Investigations of the mechanism of action of the complexes indicate that C2 promotes cell cycle arrest in the Sub-G1 phase in MDA-MB-231, inhibits its colony formation, and has a possible antimetastatic action, impeding cell migration in the wound-healing experiment (13% of wound healing in 24 h). The in vivo toxicological experiments with zebrafish indicate that C1 and C3 exhibit the most zebrafish embryo developmental toxicity (inhibition of spontaneous movements and heartbeats), while C2, the most promising anticancer drug in the in vitro preclinical tests, revealed the lowest toxicity in in vivo preclinical screening.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Animales , Rutenio/farmacología , Rutenio/química , Pez Cebra , Estructura Molecular , Complejos de Coordinación/química , Antineoplásicos/química , Línea Celular Tumoral , Antraquinonas/farmacología
2.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986804

RESUMEN

Inducing immunogenic cell death (ICD) during cancer therapy is a major challenge that might significantly improve patient survival. The purpose of this study was to develop a theranostic nanocarrier, capable both of conveying a cytotoxic thermal dose when mediating photothermal therapy (PTT) after its intravenous delivery, and of consequently inducing ICD, improving survival. The nanocarrier consists of red blood cell membranes (RBCm) embedding the near-infrared dye IR-780 (IR) and camouflaging Mn-ferrite nanoparticles (RBCm-IR-Mn). The RBCm-IR-Mn nanocarriers were characterized by size, morphology, surface charge, magnetic, photophysical, and photothermal properties. Their photothermal conversion efficiency was found to be size- and concentration-dependent. Late apoptosis was observed as the cell death mechanism for PTT. Calreticulin and HMGB1 protein levels increased for in vitro PTT with temperature around 55 °C (ablative regime) but not for 44 °C (hyperthermia), suggesting ICD elicitation under ablation. RBCm-IR-Mn were then intravenously administered in sarcoma S180-bearing Swiss mice, and in vivo ablative PTT was performed five days later. Tumor volumes were monitored for the subsequent 120 days. RBCm-IR-Mn-mediated PTT promoted tumor regression in 11/12 animals, with an overall survival rate of 85% (11/13). Our results demonstrate that the RBCm-IR-Mn nanocarriers are great candidates for PTT-induced cancer immunotherapy.

3.
J Inorg Biochem ; 226: 111625, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655962

RESUMEN

For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación , Metionina/química , Rubidio/química , Triptófano/química , Animales , Apoptosis/efectos de los fármacos , Células 3T3 BALB , Neoplasias de la Mama/metabolismo , Chlorocebus aethiops , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Femenino , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Células Vero
4.
Sci Total Environ ; 793: 148633, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34182436

RESUMEN

Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Ecotoxicología , Sedimentos Geológicos , Estudios Retrospectivos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
J Biol Inorg Chem ; 26(4): 385-401, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33837856

RESUMEN

Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.


Asunto(s)
Alopurinol/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Mamarias Animales/tratamiento farmacológico , Compuestos de Rutenio/química , Compuestos de Rutenio/farmacología , Alopurinol/química , Animales , Líquido Ascítico/citología , Ciclo Celular/efectos de los fármacos , Ensayos de Migración Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Fibroblastos , Humanos , Ratones , Neoplasias Experimentales/tratamiento farmacológico
6.
Mol Biol Rep ; 48(3): 2035-2046, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33709282

RESUMEN

Polymorphism in metabolizing enzymes can influence drug response as well as the risk for adverse drug reactions. Nevertheless, there are still few studies analyzing the consequence of polymorphisms for the Glutathione-S-transferases (GST) gene to drug response in chronic myeloid leukemia (CML). This study reports, the influence of GSTP1*B and GSTT1/GSTM1null polymorphisms in response to imatinib in CML patients in a Brazilian population. One hundred thirty-nine CML patients from the Clinical Hospital of Goiânia, Goiás, Brazil, treated with imatinib were enrolled in this study. Genotyping of GSTT1 and GSTM1 genes deletions were performed by qPCR and of GSTP1 gene was performed by RFLP-PCR. The frequency of GSTP1*1B, GSTT1 and GSTM1null polymorphisms were determined for all patients. The influence of each patient's genotypes was analyzed with the patient's response to imatinib treatment. Brazilian CML patients revealed GSTT1 and GSTM1 genes deletions. GSTT1 deletion was found in 19.3% of patients and GSTM1 deletion in 48.7% of patients with CML. GSTT1/GSTM1 deletion was found in 11.7% in Brazilian CML patients. The "G allele" of GSTP1*B, is associated with later cytogenetic response in imatinib therapy. While, the gene presence combined with GG genotype (GSTM1 present/GSTPI-GG) conferred a tend to a later cytogenetic response to patients. GSTP1*B and GSTT1/GSTM1null polymorphisms influence treatment response in CML. Brazilian CML patients presenting GSTP1 AA/AG genotypes alone and in combination with GSTT1 null reach the cytogenetic response faster, while patients presenting GSTP1-GG and GSTMI positive genotypes may take longer to achieve cytogenetic response. As a result, it allows a better prognosis, with the use of an alternative therapy, other than reducing treatment cost.


Asunto(s)
Predisposición Genética a la Enfermedad , Gutatión-S-Transferasa pi/genética , Glutatión Transferasa/genética , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Polimorfismo Genético , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Brasil , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Biol Trace Elem Res ; 198(2): 669-680, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32266641

RESUMEN

Ruthenium(II)/benzonitrile complexes have demonstrated promising anticancer properties. Considering that there are no specific therapies for treating sarcoma, we decided to evaluate the cytotoxic, genotoxic, and lethal effects of cis-[RuCl(BzCN)(phen)(dppb)]PF6 (BzCN = benzonitrile; phen = 1,10-phenanthroline; dppb = 1,4-bis-(diphenylphosphino)butane), as well as the mechanism of cell death induction that occurs against murine sarcoma-180 tumor. Thus, MTT assay was applied to assess the ruthenium cytotoxicity, showing that the compound is a more potent inhibitor for the sarcoma-180 tumor cell viability than normal cells (lymphocytes). The comet assay indicated low genotoxic for normal cells. cis-[RuCl(BzCN)(phen)(dppb)]PF6 also showed moderate lethality in Artemia salina. The complex induced cell cycle arrest in the G0/G1 phase in sarcoma-180 cells. In addition, the complex caused S180 cells to die by apoptosis by an increase in Annexin-V-positive cells and morphological changes typical of apoptotic cells. Additionally, cis-[RuCl(BzCN)(phen)(dppb)]PF6 increased the gene expression of Bax, Casp3, and Tp53 in S180 cells. By using a western blot, we observed an increased protein level of TNF-R2, Bax, and p21. In conclusion, cis-[RuCl(BzCN)(phen)(dppb)]PF6 is active and selective for sarcoma-180 cells, leading to cell cycle arrest at the G0/G1 and cell death through a caspases-mediated and Tp53/p21-mediated pathway.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Sarcoma , Animales , Antineoplásicos/farmacología , Apoptosis , Artemia , Caspasas , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ratones , Nitrilos , Rutenio/farmacología , Sarcoma/tratamiento farmacológico , Proteína p53 Supresora de Tumor
8.
Metallomics ; 12(4): 547-561, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108850

RESUMEN

Antimetastatic activity, high selectivity and cytotoxicity for human tumor cell lines make ruthenium(ii) complexes attractive for the development of new chemotherapeutic agents for cancer treatment. In this study, cytotoxic activities and the possible mechanism of cell death induced by three ruthenium complexes were evaluated, [Ru(MIm)(bipy)(dppf)]PF6 (1), [RuCl(Im)(bipy)(dppf)]PF6 (2) and [Ru(tzdt)(bipy)(dppf)]PF6 (3). The results showed high cytotoxicity and selectivity indexes for the human triple-negative breast tumor cell line (MDA-MB-231) with IC50 value and selectivity index for complex 1 (IC50 = 0.33 ± 0.03 µM, SI = 4.48), complex 2 (IC50 = 0.80 ± 0.06 µM, SI = 2.31) and complex 3 (IC50 = 0.48 ± 0.02 µM, SI = 3.87). The mechanism of cell death induced in MDA-MB-231 cells, after treatment with complexes 1-3, indicated apoptosis of the cells as a consequence of the increase in the percentage of cells in the Sub-G1 phase in the cell cycle analysis, characteristic morphological changes and the presence of apoptotic cells labeled with Annexin-V. Multiple targets of action were identified for complexes 1 and 3 with an induction of DNA damage in cells treated with complexes 1 and 3, mitochondrial depolarization with a reduction in mitochondrial membrane potential, an increase in reactive oxygen species levels and increased expression levels of caspase 3 and p53. In addition, antimetastatic activities for complexes 1 and 3 were observed by inhibition of cell migration by the wound healing assay and Boyden chamber assay, as well as inhibition of angiogenesis caused by MDA-MB-231 tumor cells in the CAM model.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Complejos de Coordinación/farmacología , Compuestos Ferrosos/química , Rutenio/química , Animales , Antineoplásicos/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Células CACO-2 , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Complejos de Coordinación/química , Daño del ADN , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
9.
ACS Biomater Sci Eng ; 6(8): 4523-4538, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455175

RESUMEN

IR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core. Molecular docking with AutoDock Vina studies showed that IR-780 binds to bovine serum albumin (BSA) with greater stability at a higher temperature, allowing the protein binding pocket to better fit this dye. The theoretical analysis corroborates the experimental protocols, where an enhancement of IR-780 was found coupled to BSA at 60 °C, even 30 days after preparation, in comparison to 30 °C. In vitro assays monitoring the viability of Ehrlich ascites carcinoma cells revealed the importance of the inorganic magnetic core on the nanocarrier photothermal-cytotoxic effect. Fluorescence molecular tomography measurements of Ehrlich tumor-bearing Swiss mice revealed the biodistribution of the nanocarriers, with marked accumulation in the tumor tissue (≈3% ID). The histopathological analysis demonstrated strong increase in tumoral necrosis areas after 24 and 72 h after treatment, indicating tumor regression. Tumor regression analysis of nonirradiated animals indicate a IR-780 dose-dependent antitumoral effect with survival rates higher than 70% (animals monitored up to 600 days). Furthermore, an in vivo photothermal therapy procedure was performed and tumor regression was also verified. These results show a novel insight for the biomedical application of IR-780-albumin-based nanocarriers, namely cancer therapy, not only by photoinduced therapy but also by a nonirradiation mechanism. Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) suggest potential for clinical translation.


Asunto(s)
Hipertermia Inducida , Animales , Línea Celular Tumoral , Indoles , Ratones , Simulación del Acoplamiento Molecular , Fototerapia , Distribución Tisular
10.
Biol Trace Elem Res ; 197(1): 123-131, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31773484

RESUMEN

Ruthenium is attracting considerable interest as the basis for new compounds to treat diseases, and studies have shown that complexes with different structures have significant antineoplastic and antimetastatic potential against several types of tumors, including tumors resistant to cisplatin drugs. We examined the cytotoxic, genotoxic, and pro-apoptotic activities of six ruthenium complexes containing amino acid with general formulation [Ru(AA)(bipy)(dppb)]PF6, where AA = amino acid (alanine, glycine, leucine, lysine, methionine, or tryptophan); bipy = 2,2´-bipyridine; and dppb = [1,4-bis(diphenylphosphine)butane], against A549 (lung carcinoma) and K562 (chronic myelogenous leukemia) cancer cells. The results show that the ruthenium complexes tested were able to induce cytotoxicity in A549 and K562 cancer cells. Complex 1 containing alanine inhibited the cell viability of A549 and K562 tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and the induction of DNA damage and cell cycle arrest. Complex 1 was able to induce caspase-mediated apoptosis in K562 cells through the mitochondrial dysfunction, the upregulation of apoptotic genes, and the downregulation of Bcl2 anti-apoptotic gene. Besides being cytotoxic to K562 and A549 cells, ruthenium complex containing alanine shows low cytotoxicity and genotoxicity against non-tumor cells. These results suggest that the ruthenium (II) complex is a potential safe and efficient antineoplastic candidate for leukemia treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Leucemia , Rutenio , Aminoácidos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Humanos , Rutenio/farmacología
11.
Dalton Trans ; 48(18): 6026-6039, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30724926

RESUMEN

In this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA. HSA interaction with the complexes was studied using fluorescence emission spectroscopy, where the results indicate a spontaneous interaction between the species by a static quenching mechanism. The cytotoxicity of the complexes was evaluated against A549, MDA-MB-231 and HaCat cells by MTT assay. Complexes (1) and (2), which are very active against triple negative MDA-MB-231, were subjected to further biological tests with this cell line. The cytotoxic activity triggered by the complexes was confirmed by clonogenic assay. Cell cycle analyses demonstrated marked anti-proliferative effects, especially at the G0/G1 and S phases. The morphological detection of apoptosis and necrosis - HO/PI and Annexin V-FITC/PI assay, elucidated that the type of cell death triggered by these complexes was probably by apoptosis. The in vivo toxicological assessment performed on zebrafish embryos revealed that complexes (1) and (2) did not present embryotoxic or toxic effects during embryonic and larval development showing that they are promising new prototypes of safer and more effective drugs for triple negative breast cancer treatment.


Asunto(s)
Antineoplásicos/síntesis química , Complejos de Coordinación/síntesis química , Sustancias Intercalantes/síntesis química , Pirimidinas/química , Rutenio/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/toxicidad , ADN/metabolismo , Diseño de Fármacos , Técnicas Electroquímicas/métodos , Humanos , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/toxicidad , Estructura Molecular , Relación Estructura-Actividad , Termodinámica , Pez Cebra/embriología
12.
Biomed Pharmacother ; 107: 1082-1092, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30257320

RESUMEN

Anticancer potential of ruthenium complexes has been widely investigated, but safety evaluation studies are still scarce. Despite of ruthenium-based anticancer agents are known to cause fewer side effects compared to other metal-based drugs, these compounds are not fully free of toxicity, causing mainly nephrotoxicity. Based on the promising results from antitumor activity of the complexes [Ru(L-Met)(bipy)(dppb)]PF6 (RuMet) and [Ru(L-Trp)(bipy)(dppb)]PF6 (RuTrp), for the first time we investigated the toxicity profile of these complexes in rodent and zebrafish models. The acute oral toxicity was evaluated in Swiss mice. The mutagenic and genotoxic potential was determined by a combination of Micronucleus (MN) and Comet assay protocols, after exposure of Swiss mice to RuMet and RuTrp in therapeutic doses. Zebrafish embryos were exposed to these complexes, and their development observed up to 96 h post-fertilization. RuMet and RuTrp complexes showed low acute oral toxicity. Recorded behavioral changes were not recorded, nor were macroscopic morphological changes or structural modifications in the liver and kidneys. These complexes did not cause genetic toxicity, presenting a lack of micronuclei formation and low DNA damage induction in the cells from Swiss mice. In contradiction, cisplatin treatment exhibited high mutagenicity and genotoxicity. RuMet and RuTrp showed low toxicity in the embryo development of zebrafish. The RuMet and RuTrp complexes demonstrated low toxicity in the two study models, an interesting property in preclinical studies for novel anticancer agents.


Asunto(s)
Antineoplásicos/toxicidad , Daño del ADN/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Compuestos de Rutenio/toxicidad , Administración Oral , Aminoácidos/química , Animales , Antineoplásicos/química , Cisplatino/toxicidad , Ensayo Cometa , Femenino , Masculino , Ratones , Pruebas de Micronúcleos , Compuestos de Rutenio/química , Pruebas de Toxicidad Aguda , Pez Cebra
13.
Mol Cell Biochem ; 438(1-2): 199-217, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28795366

RESUMEN

The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF6 [Spy = pyridine-6-thiolate; bipy = 2,2'-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1'-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay. The complex [Ru(Spy)(bipy)(dppb)]PF6 (3) was selected to study both the cellular and molecular mechanisms underlying its promising anticancer action in S-180 cells. The results obtained from this study indicated that complex (3) induces cell cycle arrest in the G0/G1 phase in S-180 cells associated with a decrease in the number of cells in S phase. After 24 and 48 h of exposure to complex (3), the cell viability decreased when compared to the negative control. Complex (3) does not appear to be involved in the DNA damage, but induced changes in the mitochondrial membrane potential in S-180 cells. Furthermore, there was also an increase in the gene expression of Bax, Caspase 9, and Tp53. According to our results, complex (3) induces cell apoptosis through p53/Bax-dependent intrinsic pathway and suppresses the expression of active antiapoptotic Bcl-2 protein.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejos de Coordinación , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Rutenio , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Humanos , Células K562 , Ratones , Mitocondrias/patología , Rutenio/química , Rutenio/farmacología
14.
Tumour Biol ; 39(10): 1010428317695933, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29019283

RESUMEN

Peritoneal carcinomatosis is considered as a potentially lethal clinical condition, and the therapeutic options are limited. The antitumor effectiveness of the [Ru(l-Met)(bipy)(dppb)]PF6(1) and the [Ru(l-Trp)(bipy)(dppb)]PF6(2) complexes were evaluated in the peritoneal carcinomatosis model, Ehrlich ascites carcinoma-bearing Swiss mice. This is the first study that evaluated the effect of Ru(II)/amino acid complexes for antitumor activity in vivo. Complexes 1 and 2 (2 and 6 mg kg-1) showed tumor growth inhibition ranging from moderate to high. The mean survival time of animal groups treated with complexes 1 and 2 was higher than in the negative and vehicle control groups. The induction of Ehrlich ascites carcinoma in mice led to alterations in hematological and biochemical parameters, and not the treatment with complexes 1 and 2. The treatment of Ehrlich ascites carcinoma-bearing mice with complexes 1 and 2 increased the number of Annexin V positive cells and cleaved caspase-3 levels and induced changes in the cell morphology and in the cell cycle phases by induction of sub-G1 and G0/G1 cell cycle arrest. In addition, these complexes reduce angiogenesis induced by Ehrlich ascites carcinoma cells in chick embryo chorioallantoic membrane model. The treatment with the LAT1 inhibitor decreased the sensitivity of the Ehrlich ascites carcinoma cells to complexes 1 and 2 in vitro-which suggests that the LAT1 could be related to the mechanism of action of amino acid/ruthenium(II) complexes, consequently decreasing the glucose uptake. Therefore, these complexes could be used to reduce tumor growth and increase mean survival time with less toxicity than cisplatin. Besides, these complexes induce apoptosis by combination of different mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Ehrlich/patología , Neoplasias Peritoneales/patología , Compuestos de Rutenio/farmacología , Aminoácidos/farmacología , Animales , Western Blotting , Ratones
15.
Chem Biol Interact ; 278: 101-113, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28935426

RESUMEN

Antimetastatic activities, low toxicity to normal cells and high selectivity for tumor cells make of the ruthenium complexes promising candidates in the search for develop new chemotherapeutic agents for the treatment of cancer. This study aimed to determine the cytotoxic, genotoxic and to elucidate the signaling pathway involved in the death cell process induced by cis-[RuCl(BzCN)(bipy)(dppb)]PF6(1) and cis-[RuCl(BzCN)(bipy)(dppe)]PF6(2) in Ehrlich ascites carcinoma (EAC) in vitro. Moreover, we report for the first time the anti-angiogenic potential on chick embryo chorioallantoic membrane (CAM) model. Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls with an age range of 20-30 years and used to calculate the selectivity index (SI). The complex 2 (IC50 = 8.5 ± 0.4/SI = 6.3) showed high cytotoxic and selectivity index against EAC cells than complex 1 (IC50 = 14.9 ± 0.2/SI = 0.2) using the MTT assay. Complex 2 induced DNA damage on Ehrlich tumor cells at concentrations and time periods evalueted. In consequence, it was observed an increase of Tp53 gene expression, G0/G1-arrest cells, and increased levels of cleaved PARP protein. Beside that, the treatment of EAC with complex 2 led to an increase in Annexin V-positive cells and apoptosis induction by Caspase-7. Additionally, the complex 2 inhibited the angiogenesis caused by Ehrlich tumor cells in CAM model. This complex is active and selective for Ehrlich tumor cells, inducing DNA damage, cell cycle arrest and cell death by caspase-dependent apoptosis involving PARP activation (PARP1), and Tp53 induction.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Daño del ADN/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Animales , Antineoplásicos/química , Carcinoma de Ehrlich/irrigación sanguínea , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Células Cultivadas , Embrión de Pollo , Pollos , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/patología , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Rutenio/química , Proteína p53 Supresora de Tumor/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...