Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Intervalo de año de publicación
1.
Glycobiology ; 34(7)2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38836441

RESUMEN

Heparan sulfate (HS), a sulfated polysaccharide abundant in the extracellular matrix, plays pivotal roles in various physiological and pathological processes by interacting with proteins. Investigating the binding selectivity of HS oligosaccharides to target proteins is essential, but the exhaustive inclusion of all possible oligosaccharides in microarray experiments is impractical. To address this challenge, we present a hybrid pipeline that integrates microarray and in silico techniques to design oligosaccharides with desired protein affinity. Using fibroblast growth factor 2 (FGF2) as a model protein, we assembled an in-house dataset of HS oligosaccharides on microarrays and developed two structural representations: a standard representation with all atoms explicit and a simplified representation with disaccharide units as "quasi-atoms." Predictive Quantitative Structure-Activity Relationship (QSAR) models for FGF2 affinity were developed using the Random Forest (RF) algorithm. The resulting models, considering the applicability domain, demonstrated high predictivity, with a correct classification rate of 0.81-0.80 and improved positive predictive values (PPV) up to 0.95. Virtual screening of 40 new oligosaccharides using the simplified model identified 15 computational hits, 11 of which were experimentally validated for high FGF2 affinity. This hybrid approach marks a significant step toward the targeted design of oligosaccharides with desired protein interactions, providing a foundation for broader applications in glycobiology.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Heparitina Sulfato , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Relación Estructura-Actividad Cuantitativa , Análisis por Micromatrices , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Humanos , Modelos Moleculares
2.
J Med Chem ; 67(8): 6508-6518, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568752

RESUMEN

Computational models that predict pharmacokinetic properties are critical to deprioritize drug candidates that emerge as hits in high-throughput screening campaigns. We collected, curated, and integrated a database of compounds tested in 12 major end points comprising over 10,000 unique molecules. We then employed these data to build and validate binary quantitative structure-activity relationship (QSAR) models. All trained models achieved a correct classification rate above 0.60 and a positive predictive value above 0.50. To illustrate their utility in drug discovery, we used these models to predict the pharmacokinetic properties for drugs in the NCATS Inxight Drugs database. In addition, we employed the developed models to predict the pharmacokinetic properties of all compounds in the DrugBank. All models described in this paper have been integrated and made publicly available via the PhaKinPro Web-portal that can be accessed at https://phakinpro.mml.unc.edu/.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Humanos , Internet , Descubrimiento de Drogas , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química
3.
Antiviral Res ; 217: 105620, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169224

RESUMEN

Diseases caused by new viruses cost thousands if not millions of human lives and trillions of dollars. We have identified, collected, curated, and integrated all chemogenomics data from ChEMBL for 13 emerging viruses that hold the greatest potential threat to global human health. By identifying and solving several challenges related to data annotation accuracy, we developed a highly curated and thoroughly annotated database of compounds tested in both phenotypic and target-based assays for these viruses that we dubbed SMACC (Small Molecule Antiviral Compound Collection). The pilot version of the SMACC database contains over 32,500 entries for 13 viruses. By analyzing data in SMACC, we have identified ∼50 compounds with polyviral inhibition profile, mostly covering flavi- and coronaviruses. The SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel BSA agents in preparation for future viral outbreaks. SMACC is publicly available at https://smacc.mml.unc.edu.


Asunto(s)
Infecciones por Coronavirus , Virus , Humanos , Antivirales/farmacología , Virus/genética , Bases de Datos Factuales
4.
bioRxiv ; 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35860225

RESUMEN

Diseases caused by new viruses costs thousands if not millions of human lives and trillions of dollars in damage to the global economy. Despite the rapid development of vaccines for SARS-CoV-2, the lack of small molecule antiviral drugs that work against multiple viral families (broad-spectrum antivirals; BSAs) has left the entire world’s human population vulnerable to the infection between the beginning of the outbreak and the widespread availability of vaccines. Developing BSAs is an attractive, yet challenging, approach that could prevent the next, inevitable, viral outbreak from becoming a global catastrophe. To explore whether historical medicinal chemistry efforts suggest the possibility of discovering novel BSAs, we (i) identified, collected, curated, and integrated all chemical bioactivity data available in ChEMBL for molecules tested in respective assays for 13 emerging viruses that, based on published literature, hold the greatest potential threat to global human health; (ii) identified and solved the challenges related to data annotation accuracy including assay description ambiguity, missing cell or target information, and incorrect BioAssay Ontology (BAO) annotations; (iii) developed a highly curated and thoroughly annotated database of compounds tested in both phenotypic (21,392 entries) and target-based (11,123 entries) assays for these viruses; and (iv) identified a subset of compounds showing BSA activity. For the latter task, we eliminated inconclusive and annotated duplicative entries by checking the concordance between multiple assay results and identified eight compounds active against 3-4 viruses from the phenotypic data, 16 compounds active against two viruses from the target-based data, and 35 compounds active in at least one phenotypic and one target-based assay. The pilot version of our SMACC (Small Molecule Antiviral Compound Collection) database contains over 32,500 entries for 13 viruses. Our analysis indicates that previous research yielded very small number of BSA compounds. We posit that focused and coordinated efforts strategically targeting the discovery of such agents must be established and maintained going forward. The SMACC database publicly available at https://smacc.mml.unc.edu may serve as a reference for virologists and medicinal chemists working on the development of novel BSA agents in preparation for future viral outbreaks.

5.
ACS Pharmacol Transl Sci ; 5(7): 468-478, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821746

RESUMEN

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for acute treatment of the disease. We investigate whether compounds that bind the human angiotensin-converting enzyme 2 (ACE2) protein can decrease SARS-CoV-2 replication without impacting ACE2's natural enzymatic function. Initial screening of a diversity library resulted in hit compounds active in an ACE2-binding assay, which showed little inhibition of ACE2 enzymatic activity (116 actives, success rate ∼4%), suggesting they were allosteric binders. Subsequent application of in silico techniques boosted success rates to ∼14% and resulted in 73 novel confirmed ACE2 binders with K d values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-directed therapy.

6.
Antiviral Res ; 204: 105360, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691424

RESUMEN

Coronaviruses are a class of single-stranded, positive-sense RNA viruses that have caused three major outbreaks over the past two decades: Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All outbreaks have been associated with significant morbidity and mortality. In this study, we have identified and explored conserved binding sites in the key coronavirus proteins for the development of broad-spectrum direct acting anti-coronaviral compounds and validated the significance of this conservation for drug discovery with existing experimental data. We have identified four coronaviral proteins with highly conserved binding site sequence and 3D structure similarity: PLpro, Mpro, nsp10-nsp16 complex(methyltransferase), and nsp15 endoribonuclease. We have compiled all available experimental data for known antiviral medications inhibiting these targets and identified compounds active against multiple coronaviruses. The identified compounds representing potential broad-spectrum antivirals include: GC376, which is active against six viral Mpro (out of six tested, as described in research literature); mycophenolic acid, which is active against four viral PLpro (out of four); and emetine, which is active against four viral RdRp (out of four). The approach described in this study for coronaviruses, which combines the assessment of sequence and structure conservation across a viral family with the analysis of accessible chemical structure - antiviral activity data, can be explored for the development of broad-spectrum drugs for multiple viral families.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Antivirales/farmacología , Descubrimiento de Drogas , Humanos , SARS-CoV-2
7.
bioRxiv ; 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35313579

RESUMEN

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 protein can interrupt SARS-CoV-2 replication without damaging ACE2’s natural enzymatic function. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzymatic activity. This set of compounds was extended by application of quantitative structure-activity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 replication in human cells. Further effort is required to completely determine the antiviral mechanism of these compounds, but they serve as a strong starting point for both development of acute treatments for COVID-19 and research into the mechanism of infection.

8.
Mol Inform ; 40(1): e2000113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405340

RESUMEN

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 µM), proglumetacin (tested twice independently, with AC50 of 8.9 µM and 12.5 µM), and sufugolix (AC50 12.6 µM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Proteasas 3C de Coronavirus , Reposicionamiento de Medicamentos , Imidazoles/química , Ácidos Indolacéticos/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , SARS-CoV-2/enzimología , Sulfóxidos/química , Antivirales/química , Antivirales/uso terapéutico , COVID-19/enzimología , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos , Imidazoles/uso terapéutico , Ácidos Indolacéticos/uso terapéutico , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Relación Estructura-Actividad Cuantitativa , Sulfóxidos/uso terapéutico
9.
Drug Discov Today ; 25(9): 1604-1613, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32679173

RESUMEN

Here, we explore the dynamics of the response of the scientific community to several epidemics, including Coronavirus Disease 2019 (COVID-19), as assessed by the numbers of clinical trials, publications, and level of research funding over time. All six prior epidemics studied [bird flu, severe acute respiratory syndrome (SARS), swine flu, Middle East Respiratory Syndrome (MERS), Ebola, and Zika] were characterized by an initial spike of research response that flattened shortly thereafter. Unfortunately, no antiviral medications have been discovered to date as treatments for any of these diseases. By contrast, the HIV/AIDS pandemic has garnered consistent research investment since it began and resulted in drugs being developed within 7 years of its start date, with many more to follow. We argue that, to develop effective treatments for COVID-19 and be prepared for future epidemics, long-term, consistent investment in antiviral research is needed.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus , Desarrollo de Medicamentos , Epidemias , Pandemias , Neumonía Viral , Investigación , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/organización & administración , Epidemias/historia , Epidemias/prevención & control , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Investigación/organización & administración , Investigación/normas , SARS-CoV-2
10.
ChemRxiv ; 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511287

RESUMEN

The outbreak of a novel human coronavirus (SARS-CoV-2) has evolved into global health emergency, infecting hundreds of thousands of people worldwide. We have identified experimental data on the inhibitory activity of compounds tested against closely related (96% sequence identity, 100% active site conservation) protease of SARS-CoV and employed this data to build QSAR models for this dataset. We employed these models for virtual screening of all drugs from DrugBank, including compounds in clinical trials. Molecular docking and similarity search approaches were explored in parallel with QSAR modeling, but molecular docking failed to correctly discriminate between experimentally active and inactive compounds. As a result of our studies, we recommended 41 approved, experimental, or investigational drugs as potential agents against SARS-CoV-2 acting as putative inhibitors of Mpro. Ten compounds with feasible prices were purchased and are awaiting the experimental validation.
.

11.
Eur J Med Chem ; 163: 649-659, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30562700

RESUMEN

Chagas disease is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi and is primarily transmitted to humans by the feces of infected Triatominae insects during their blood meal. The disease affects 6-8 million people, mostly in Latin America countries, and kills more people in the region each year than any other parasite-born disease, including malaria. Moreover, patient numbers are currently increasing in non-endemic, developed countries, such as Australia, Japan, Canada, and the United States. The treatment is limited to one drug, benznidazole, which is only effective in the acute phase of the disease and is very toxic. Thus, there is an urgent need to develop new, safer, and effective drugs against the chronic phase of Chagas disease. Using a QSAR-based virtual screening followed by in vitro experimental evaluation, we report herein the identification of novel potent and selective hits against T. cruzi intracellular stage. We developed and validated binary QSAR models for prediction of anti-trypanosomal activity and cytotoxicity against mammalian cells using the best practices for QSAR modeling. These models were then used for virtual screening of a commercial database, leading to the identification of 39 virtual hits. Further in vitro assays showed that seven compounds were potent against intracellular T. cruzi at submicromolar concentrations (EC50 < 1 µM) and were very selective (SI > 30). Furthermore, other six compounds were also inside the hit criteria for Chagas disease, which presented activity at low micromolar concentrations (EC50 < 10 µM) against intracellular T. cruzi and were also selective (SI > 15). Moreover, we performed a multi-parameter analysis for the comparison of tested compounds regarding their balance between potency, selectivity, and predicted ADMET properties. In the next studies, the most promising compounds will be submitted to additional in vitro and in vivo assays in acute model of Chagas disease, and can be further optimized for the development of new promising drug candidates against this important yet neglected disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Relación Estructura-Actividad Cuantitativa , Trypanosoma cruzi/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Tripanocidas/química
12.
Curr Med Chem ; 26(23): 4355-4379, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29521204

RESUMEN

Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls.


Asunto(s)
Antiprotozoarios/uso terapéutico , Simulación por Computador , Enfermedades Desatendidas/tratamiento farmacológico , Antiprotozoarios/química , Reposicionamiento de Medicamentos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular
13.
Front Pharmacol ; 9: 1275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524275

RESUMEN

Virtual screening (VS) has emerged in drug discovery as a powerful computational approach to screen large libraries of small molecules for new hits with desired properties that can then be tested experimentally. Similar to other computational approaches, VS intention is not to replace in vitro or in vivo assays, but to speed up the discovery process, to reduce the number of candidates to be tested experimentally, and to rationalize their choice. Moreover, VS has become very popular in pharmaceutical companies and academic organizations due to its time-, cost-, resources-, and labor-saving. Among the VS approaches, quantitative structure-activity relationship (QSAR) analysis is the most powerful method due to its high and fast throughput and good hit rate. As the first preliminary step of a QSAR model development, relevant chemogenomics data are collected from databases and the literature. Then, chemical descriptors are calculated on different levels of representation of molecular structure, ranging from 1D to nD, and then correlated with the biological property using machine learning techniques. Once developed and validated, QSAR models are applied to predict the biological property of novel compounds. Although the experimental testing of computational hits is not an inherent part of QSAR methodology, it is highly desired and should be performed as an ultimate validation of developed models. In this mini-review, we summarize and critically analyze the recent trends of QSAR-based VS in drug discovery and demonstrate successful applications in identifying perspective compounds with desired properties. Moreover, we provide some recommendations about the best practices for QSAR-based VS along with the future perspectives of this approach.

14.
Artículo en Inglés | MEDLINE | ID: mdl-30450114

RESUMEN

BACKGROUND: Drug repurposing has been an interesting and cost-effective approach, especially for neglected diseases, such as Chagas disease. METHODS: In this work, we studied the activity of the antidepressant drug sertraline against Trypanosoma cruzi trypomastigotes and intracellular amastigotes of the Y and Tulahuen strains, and investigated its action mode using cell biology and in silico approaches. RESULTS: Sertraline demonstrated in vitro efficacy against intracellular amastigotes of both T. cruzi strains inside different host cells, including cardiomyocytes, with IC50 values between 1 to 10 µM, and activity against bloodstream trypomastigotes, with IC50 of 14 µM. Considering the mammalian cytotoxicity, the drug resulted in a selectivity index of 17.8. Sertraline induced a change in the mitochondrial integrity of T. cruzi, resulting in a decrease in ATP levels, but not affecting reactive oxygen levels or plasma membrane permeability. In silico approaches using chemogenomic target fishing, homology modeling and molecular docking suggested the enzyme isocitrate dehydrogenase 2 of T. cruzi (TcIDH2) as a potential target for sertraline. CONCLUSIONS: The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.

15.
Future Microbiol ; 13: 1523-1535, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30311802

RESUMEN

AIM: The shape-based virtual screening was used for the identification of new compounds anti-paracoccidioidomycosis (PCM). MATERIALS & METHODS: The study was performed according to the following steps: collection and curation of a dataset of quinolinyl N-oxide chalcones with anti-PCM activity, development and validation of shape-based models, application of the best model for virtual screening, and experimental validation. RESULTS & CONCLUSION: Among 31 computational hits, eight compounds showed potent antifungal activity and low cytotoxicity for mammalian cells. The checkerboard assay showed that most promising hit (compound 3) displayed additive effects with the antifungal cotrimoxazole and amphotericin B. Therefore, the shape-based virtual screening allowed us to discover promising compounds in prospective hit-to-lead optimization studies for tackling PCM.


Asunto(s)
Antifúngicos/aislamiento & purificación , Chalcona/aislamiento & purificación , Simulación por Computador , Paracoccidioides/efectos de los fármacos , Anfotericina B/farmacología , Animales , Antifúngicos/química , Antifúngicos/farmacología , Células 3T3 BALB , Chalcona/análogos & derivados , Chalcona/farmacología , Conjuntos de Datos como Asunto , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Estudios Prospectivos , Combinación Trimetoprim y Sulfametoxazol/farmacología
16.
Front Pharmacol ; 9: 146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559909

RESUMEN

Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium, affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum (PfdUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei. We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as PfdUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual PfdUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

17.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01002, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-974426

RESUMEN

Few Zika virus (ZIKV) outbreaks had been reported since its first detection in 1947, until the recent epidemics occurred in South America (2014/2015) and expeditiously became a global public health emergency. This arbovirus reached 0.5-1.3 million cases of ZIKV infection in Brazil in 2015 and rapidly spread in new geographic areas such as the Americas. Despite the mild symptoms of the Zika fever, the major concern is related to the related severe neurological disorders, especially microcephaly in newborns. Advances in ZIKV drug discovery have been made recently and constitute promising approaches to ZIKV treatment. In this review, we summarize current computational drug discovery efforts and their applicability to discovery of anti-ZIKV drugs. Lastly, we present successful examples of the use of computational approaches to ZIKV drug discovery.


Asunto(s)
Diseño Asistido por Computadora/estadística & datos numéricos , Descubrimiento de Drogas/instrumentación , Virus Zika , Antivirales/farmacología , Triaje/métodos , Metodologías Computacionales , Flavivirus
18.
J. venom. anim. toxins incl. trop. dis ; 24: 30, 2018. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-976028

RESUMEN

Drug repurposing has been an interesting and cost-effective approach, especially for neglected diseases, such as Chagas disease. Methods: In this work, we studied the activity of the antidepressant drug sertraline against Trypanosoma cruzi trypomastigotes and intracellular amastigotes of the Y and Tulahuen strains, and investigated its action mode using cell biology and in silico approaches. Results: Sertraline demonstrated in vitro efficacy against intracellular amastigotes of both T. cruzi strains inside different host cells, including cardiomyocytes, with IC50 values between 1 to 10 µM, and activity against bloodstream trypomastigotes, with IC50 of 14 µM. Considering the mammalian cytotoxicity, the drug resulted in a selectivity index of 17.8. Sertraline induced a change in the mitochondrial integrity of T. cruzi, resulting in a decrease in ATP levels, but not affecting reactive oxygen levels or plasma membrane permeability. In silico approaches using chemogenomic target fishing, homology modeling and molecular docking suggested the enzyme isocitrate dehydrogenase 2 of T. cruzi (TcIDH2) as a potential target for sertraline. Conclusions: The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.(AU)


Asunto(s)
Trypanosoma cruzi , Técnicas In Vitro , Sertralina , Reposicionamiento de Medicamentos
19.
Bioorg Med Chem Lett ; 27(11): 2459-2464, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28434763

RESUMEN

Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98µM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50µM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.


Asunto(s)
Antiprotozoarios/farmacología , Chalconas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Leishmania infantum/efectos de los fármacos , Nitrofuranos/farmacología , Piperazinas/farmacología , Piperidinas/farmacología , Anfotericina B/farmacología , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Chalconas/síntesis química , Chalconas/química , Chlorocebus aethiops , Simulación por Computador , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Bases de Datos Factuales , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Nitrofuranos/síntesis química , Nitrofuranos/química , Piperazinas/síntesis química , Piperazinas/química , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Células Vero
20.
J Med Chem ; 59(15): 7075-88, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27396732

RESUMEN

Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for inhibition of SmTGR were developed and validated using the Organization for Economic Co-operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds representing new chemical scaffolds have activity against schistosomula and adult worms at low micromolar concentrations and therefore represent promising antischistosomal hits for further hit-to-lead optimization.


Asunto(s)
Descubrimiento de Drogas , Relación Estructura-Actividad Cuantitativa , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis/tratamiento farmacológico , Esquistosomicidas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Estructura Molecular , Esquistosomicidas/síntesis química , Esquistosomicidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...