Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 22(1): 86-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33235385

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Reinfección/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/virología , Chlorocebus aethiops , Epidemias/prevención & control , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Humanos , Interferones/genética , Interferones/inmunología , Interferones/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Reinfección/virología , SARS-CoV-2/fisiología , Linfocitos T/metabolismo , Linfocitos T/virología
2.
Nat Commun ; 11(1): 3736, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719371

RESUMEN

A replication-competent vesicular stomatitis virus vaccine expressing the Ebola virus (EBOV) glycoprotein (GP) (rVSV-ZEBOV) was successfully used during the 2013-16 EBOV epidemic. Additionally, chimeric and human monoclonal antibodies (mAb) against the EBOV GP have shown promise in animals and humans when administered therapeutically. Uncertainty exists regarding the efficacy of postexposure antibody treatments in the event of a known exposure of a recent rVSV-ZEBOV vaccinee. Here, we model a worst-case scenario using rhesus monkeys vaccinated or unvaccinated with the rVSV-ZEBOV vaccine. We demonstrate that animals challenged with a uniformly lethal dose of EBOV one day following vaccination, and then treated with the anti-EBOV GP mAb MIL77 starting 3 days postexposure show no evidence of clinical illness and survive challenge. In contrast, animals receiving only vaccination or only mAb-based therapy become ill, with decreased survival compared to animals vaccinated and subsequently treated with MIL77. These results suggest that rVSV-ZEBOV augments immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Profilaxis Posexposición , Vacunación , Virus de la Estomatitis Vesicular Indiana/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Estimación de Kaplan-Meier , Macaca mulatta , Resultado del Tratamiento , Carga Viral/inmunología
3.
bioRxiv ; 2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32511377

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.

4.
Retrovirology ; 17(1): 8, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276640

RESUMEN

The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.


Asunto(s)
Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , VIH-1/efectos de los fármacos , Animales , Antirretrovirales/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Ratones , Ratas , Bazo/patología
5.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969438

RESUMEN

As a long-acting formulation of the nonnucleoside reverse transcriptase inhibitor rilpivirine (RPV LA) has been proposed for use as preexposure prophylaxis (PrEP) and the prevalence of transmitted RPV-resistant viruses can be relatively high, we evaluated the efficacy of RPV LA to inhibit vaginal transmission of RPV-resistant HIV-1 in humanized mice. Vaginal challenges of wild-type (WT), Y181C, and Y181V HIV-1 were performed in mice left untreated or after RPV PrEP. Plasma viremia was measured for 7 to 10 weeks, and single-genome sequencing was performed on plasma HIV-1 RNA in mice infected during PrEP. RPV LA significantly prevented vaginal transmission of WT HIV-1 and Y181C HIV-1, which is 3-fold resistant to RPV. However, it did not prevent transmission of Y181V HIV-1, which has 30-fold RPV resistance in the viruses used for this study. RPV LA did delay WT HIV-1 dissemination in infected animals until genital and plasma RPV concentrations waned. Animals that became infected despite RPV LA PrEP did not acquire new RPV-resistant mutations above frequencies in untreated mice or untreated people living with HIV-1, and the mutations detected conferred low-level resistance. These data suggest that high, sustained concentrations of RPV were required to inhibit vaginal transmission of HIV-1 with little or no resistance to RPV but could not inhibit virus with high resistance. HIV-1 did not develop high-level or high-frequency RPV resistance in the majority of mice infected after RPV LA treatment. However, the impact of low-frequency RPV resistance on virologic outcome during subsequent antiretroviral therapy still is unclear.IMPORTANCE The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/prevención & control , Infecciones por VIH/transmisión , VIH-1/efectos de los fármacos , Profilaxis Pre-Exposición/métodos , Rilpivirina/farmacología , Vagina/virología , Animales , Modelos Animales de Enfermedad , Farmacorresistencia Viral/efectos de los fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Ratones , Mutación , Inhibidores de la Transcriptasa Inversa/farmacología , Replicación Viral/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
6.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894467

RESUMEN

Two mutations, G112D and M230I, were selected in the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) by a novel nonnucleoside reverse transcriptase inhibitor (NNRTI). G112D is located near the HIV-1 polymerase active site; M230I is located near the hydrophobic region where NNRTIs bind. Thus, M230I could directly interfere with NNRTI binding but G112D could not. Biochemical and virological assays were performed to analyze the effects of these mutations individually and in combination. M230I alone caused a reduction in susceptibility to NNRTIs, while G112D alone did not. The G112D/M230I double mutant was less susceptible to NNRTIs than was M230I alone. In contrast, both mutations affected the ability of RT to incorporate nucleoside analogs. We suggest that the mutations interact with each other via the bound nucleic acid substrate; the nucleic acid forms part of the polymerase active site, which is near G112D. The positioning of the nucleic acid is influenced by its interactions with the "primer grip" region and could be influenced by the M230I mutation.IMPORTANCE Although antiretroviral therapy (ART) is highly successful, drug-resistant variants can arise that blunt the efficacy of ART. New inhibitors that are broadly effective against known drug-resistant variants are needed, although such compounds might select for novel resistance mutations that affect the sensitivity of the virus to other compounds. Compound 13 selects for resistance mutations that differ from traditional NNRTI resistance mutations. These mutations cause increased sensitivity to NRTIs, such as AZT.


Asunto(s)
Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Línea Celular , Farmacorresistencia Viral/genética , Células HEK293 , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/efectos de los fármacos , VIH-1/genética , Humanos , Mutación/efectos de los fármacos , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología
7.
JCI Insight ; 3(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30232273

RESUMEN

A major pathogenic feature associated with HIV infection is lymphoid fibrosis, which persists during antiretroviral therapy (ART). Lymphoid tissues play critical roles in the generation of antigen-specific immune response, and fibrosis disrupts the stromal network of lymphoid tissues, resulting in impaired immune cell trafficking and function, as well as immunodeficiency. Developing an animal model for investigating the impact of HIV infection-induced lymphoid tissue fibrosis on immunodeficiency and immune cell impairment is critical for therapeutics development and clinical translation. Said model will enable in vivo mechanistic studies, thus complementing the well-established surrogate model of SIV infection-induced lymphoid tissue fibrosis in macaques. We developed a potentially novel human immune system-humanized mouse model by coengrafting autologous fetal thymus, spleen, and liver organoids under the kidney capsule, along with i.v. injection of autologous fetal liver-derived hematopoietic stem cells, thus termed the BM-liver-thymus-spleen (BLTS) humanized mouse model. BLTS humanized mouse model supports development of human immune cells and human lymphoid organoids (human thymus and spleen organoids). HIV infection in BLTS humanized mice results in progressive fibrosis in human lymphoid tissues, which was associated with immunodeficiency in the lymphoid tissues, and lymphoid tissue fibrosis persists during ART, thus recapitulating clinical outcomes.


Asunto(s)
Fibrosis/inmunología , Infecciones por VIH/inmunología , Hígado/inmunología , Tejido Linfoide/inmunología , Bazo/inmunología , Timo/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Trasplante de Tejido Fetal , Fibrosis/patología , Infecciones por VIH/tratamiento farmacológico , Células Madre Hematopoyéticas , Humanos , Hígado/patología , Trasplante de Hígado , Tejido Linfoide/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organogénesis , Bazo/patología , Bazo/trasplante , Timo/patología , Timo/trasplante , Trasplante Heterólogo
8.
J Acquir Immune Defic Syndr ; 72(5): 485-91, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27124362

RESUMEN

BACKGROUND: Rilpivirine (RPV) is the latest non-nucleoside reverse transcriptase inhibitor (NNRTI) to be approved by Food and Drug Administration to combat HIV-1 infections. NNRTIs inhibit the chemical step in viral DNA synthesis by binding to an allosteric site located about 10 Å from the polymerase active site of reverse transcriptase (RT). Although NNRTIs potently inhibit the replication of wild-type HIV-1, the binding site is not conserved, and mutations arise in the binding pocket. Doravirine (DOR) is a new NNRTI in phase III clinical trials. METHODS: Using a single round HIV-1 infection assay, we tested RPV and DOR against a broad panel of NNRTI-resistant mutants to determine their respective activities. We also used molecular modeling to determine if the susceptibility profile of each compound was related to how they bind RT. RESULTS: Several mutants displayed decreased susceptibility to DOR. However, with the exception of E138K, our data suggest that the mutations that reduce the potency of DOR and RPV are non-overlapping. Thus, these 2 NNRTIs have the potential to be used together in combination therapy. We also show that the location at which DOR and RPV bind with the NNRTI binding pocket of RT correlates with the differences in their respective susceptibility to the panel of NNRTI-resistance mutations. CONCLUSIONS: This shows that (1) DOR is susceptible to a number of well-known NNRTI resistance mutations and (2) an understanding of the mutational susceptibilities and binding interactions of NNRTIs with RT could be used to develop pairs of compounds with non-overlapping mutational susceptibilities.


Asunto(s)
Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Mutación , Piridonas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Rilpivirina/farmacología , Triazoles/farmacología , Relación Dosis-Respuesta a Droga , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Replicación Viral/efectos de los fármacos
9.
Retrovirology ; 13: 11, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880034

RESUMEN

BACKGROUND: Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. RESULTS: Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. CONCLUSIONS: The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , VIH-1/efectos de los fármacos , Mutación , Rilpivirina/análogos & derivados , Rilpivirina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
10.
Antimicrob Agents Chemother ; 59(12): 7762-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438501

RESUMEN

Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , Transcriptasa Inversa del VIH/genética , VIH-1/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Rilpivirina/farmacología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Animales , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Preparaciones de Acción Retardada , Humanos , Recuento de Linfocitos , Macaca nemestrina , Pruebas de Sensibilidad Microbiana , Mutación/genética , ARN Viral/genética , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Rilpivirina/administración & dosificación , Rilpivirina/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología
11.
J Food Prot ; 71(7): 1475-80, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18680950

RESUMEN

The focus of this research was to investigate the efficacy of icing as a postharvest treatment for reduction of the levels of Vibrio vulnificus and Vibrio parahaemolyticus in commercial quantities of shellstock oysters. The experiments were conducted in June and August of 2006 and consisted of the following treatments: (i) on-board icing immediately after harvest; (ii) dockside icing approximately 1 to 2 h prior to shipment; and (iii) no icing (control). Changes in the levels of pathogenic Vibrio spp. during wholesale and retail handling for 2 weeks postharvest were also monitored. On-board icing achieved temperature reductions in all sacks in accordance with the National Shellfish Sanitation Program standard, but dockside icing did not meet this standard. Based on one-way analysis of variance, the only statistically significant relationship between Vibrio levels and treatment occurred for samples harvested in August; in this case, the levels of V. vulnificus in the noniced oysters were significantly higher (P < 0.05) than were the levels in the samples iced on-board. When analyzing counts over the 14-day storage period, using factorial analysis, there were statistically significant differences in V. vulnificus and V. parahaemolyticus levels by sample date and/or treatment (P < 0.05), but these relationships were not consistent. Treated (iced) oysters had significantly higher gaping (approximately 20%) after 1 week in cold storage than did noniced oysters (approximately 10%) and gaping increased significantly by day 14 of commercial storage. On-board and dockside icing did not predictably reduce the levels of V. vulnificus or V. parahaemolyticus in oysters, and icing negatively impacted oyster survival during subsequent cold storage.


Asunto(s)
Crassostrea/microbiología , Conservación de Alimentos/métodos , Hielo , Mariscos/microbiología , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio vulnificus/crecimiento & desarrollo , Análisis de Varianza , Animales , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Análisis Factorial , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos/métodos , Manipulación de Alimentos/normas , Humanos , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...