Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 14(1): 3686, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355947

RESUMEN

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.


Asunto(s)
Sistema Nervioso Entérico , Neuronas , Ratones , Animales , Neuronas/metabolismo , Sistema Nervioso Entérico/metabolismo , Proteínas Portadoras/metabolismo , Plexo Mientérico , Ratones Transgénicos , Colon
2.
J Vis Exp ; (201)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38009742

RESUMEN

The gastrointestinal (GI) tract performs a range of functions essential for life. Congenital defects affecting its development can lead to enteric neuromuscular disorders, highlighting the importance to understand the molecular mechanisms underlying GI development and dysfunction. In this study, we present a method for gut isolation from zebrafish larvae at 5 days post fertilization to obtain live, viable cells which can be used for single-cell RNA sequencing (scRNA-seq) analysis. This protocol is based on the manual dissection of the zebrafish intestine, followed by enzymatic dissociation with papain. Subsequently, cells are submitted to fluorescence-activated cell sorting, and viable cells are collected for scRNA-seq. With this method, we were able to successfully identify different intestinal cell types, including epithelial, stromal, blood, muscle, and immune cells, as well as enteric neurons and glia. Therefore, we consider it to be a valuable resource for studying the composition of the GI tract in health and disease, using the zebrafish.


Asunto(s)
Tracto Gastrointestinal , Pez Cebra , Animales , Pez Cebra/genética , Larva/genética , Tracto Gastrointestinal/fisiología , Intestinos , Análisis de Secuencia de ARN
3.
Epigenetics Chromatin ; 16(1): 31, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537688

RESUMEN

BACKGROUND: DNA hypermethylation is an epigenetic feature that modulates gene expression, and its deregulation is observed in cancer. Previously, we identified a neural-related DNA hypermethylation fingerprint in colon cancer, where most of the top hypermethylated and downregulated genes have known functions in the nervous system. To evaluate the presence of this signature and its relevance to carcinogenesis in general, we considered 16 solid cancer types available in The Cancer Genome Atlas (TCGA). RESULTS: All tested cancers showed significant enrichment for neural-related genes amongst hypermethylated genes. This signature was already present in two premalignant tissue types and could not be explained by potential confounders such as bivalency status or tumor purity. Further characterization of the neural-related DNA hypermethylation signature in colon cancer showed particular enrichment for genes that are overexpressed during neural differentiation. Lastly, an analysis of upstream regulators identified RE1-Silencing Transcription factor (REST) as a potential mediator of this DNA methylation signature. CONCLUSION: Our study confirms the presence of a neural-related DNA hypermethylation fingerprint in various cancers, of genes linked to neural differentiation, and points to REST as a possible regulator of this mechanism. We propose that this fingerprint indicates an involvement of DNA hypermethylation in the preservation of neural stemness in cancer cells.


Asunto(s)
Neoplasias del Colon , Metilación de ADN , Humanos , Neoplasias del Colon/genética , ADN
4.
iScience ; 26(7): 107070, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426341

RESUMEN

The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis. However, composition and specification of enteric neurons and glial subtypes at larval stages, remains mainly unexplored. Here, we performed single cell RNA sequencing of zebrafish ENS at 5 days post-fertilization. We identified vagal neural crest progenitors, Schwann cell precursors, and four clusters of differentiated neurons. In addition, a previously unrecognized elavl3+/phox2bb-population of neurons and cx43+/phox2bb-enteric glia was found. Pseudotime analysis supported binary neurogenic branching of ENS differentiation, driven by a notch-responsive state. Taken together, we provide new insights on ENS development and specification, proving that the zebrafish is a valuable model for the study of congenital enteric neuropathies.

5.
Br J Cancer ; 128(12): 2318-2325, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029200

RESUMEN

BACKGROUND: Only a subset of gastric cancer (GC) patients with stage II-III benefits from chemotherapy after surgery. Tumour infiltrating lymphocytes per area (TIL density) has been suggested as a potential predictive biomarker of chemotherapy benefit. METHODS: We quantified TIL density in digital images of haematoxylin-eosin (HE) stained tissue using deep learning in 307 GC patients of the Yonsei Cancer Center (YCC) (193 surgery+adjuvant chemotherapy [S + C], 114 surgery alone [S]) and 629 CLASSIC trial GC patients (325 S + C and 304 S). The relationship between TIL density, disease-free survival (DFS) and clinicopathological variables was analysed. RESULTS: YCC S patients and CLASSIC S patients with high TIL density had longer DFS than S patients with low TIL density (P = 0.007 and P = 0.013, respectively). Furthermore, CLASSIC patients with low TIL density had longer DFS if treated with S + C compared to S (P = 0.003). No significant relationship of TIL density with other clinicopathological variables was found. CONCLUSION: This is the first study to suggest TIL density automatically quantified in routine HE stained tissue sections as a novel, clinically useful biomarker to identify stage II-III GC patients deriving benefit from adjuvant chemotherapy. Validation of our results in a prospective study is warranted.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias Gástricas , Humanos , Biomarcadores , Quimioterapia Adyuvante , Linfocitos Infiltrantes de Tumor/patología , Pronóstico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/cirugía
6.
Neurogastroenterol Motil ; 35(8): e14586, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37010851

RESUMEN

BACKGROUND: Gastrointestinal motility measurements in mice are currently performed under suboptimal conditions, as these nocturnal animals are measured during light conditions. In addition, other stressors, like individual housing, placement in a new cage during observation, and lack of bedding and cage enrichment cause animal discomfort and might contribute to higher variability. Here we aimed to develop a refined method of the widely-used whole-gut transit assay. METHODS: Wildtype mice (N = 24) were subjected to the standard or refined whole-gut transit assay, either with or without a standardized slowing in gastrointestinal motility induced by loperamide. The standard assay consisted of a gavage with carmine red, observation during the light period and individual housing in a new cage without cage enrichment. For the refined whole-gut transit assay, mice were gavaged with UV-fluorescent DETEX®, observed during the dark period, while pairwise housed in their home cage with cage enrichment. Time until excretion of the first colored fecal pellet was assessed, and pellets were collected to assess number, weight, and water content. KEY RESULTS: The DETEX®-containing pellets were UV-detectable, allowing to measure the mice in their active period in the dark. The refined method caused less variation (20.8% and 16.0%) compared to the standard method (29.0% and 21.7%). Fecal pellet number, weight, and water content was significantly different between the standard and refined method. CONCLUSIONS & INFERENCES: This refined whole-gut transit assay provides a reliable approach to measure whole-gut transit time in mice in a more physiological context, with reduced variability compared to the standard method.


Asunto(s)
Motilidad Gastrointestinal , Loperamida , Ratones , Animales , Motilidad Gastrointestinal/fisiología , Heces , Loperamida/farmacología , Agua , Tránsito Gastrointestinal/fisiología
7.
Nat Rev Gastroenterol Hepatol ; 19(12): 768-784, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056202

RESUMEN

Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.


Asunto(s)
Ecosistema , Neoplasias Gastrointestinales , Humanos , Neoplasias Gastrointestinales/etiología , Neoplasias Gastrointestinales/patología , Microambiente Tumoral/fisiología , Transducción de Señal , Carcinogénesis
8.
Front Cell Dev Biol ; 10: 901824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874825

RESUMEN

Background: Pediatric Intestinal Pseudo-obstruction (PIPO) is a congenital enteric disorder characterized by severe gastrointestinal (GI) dysmotility, without mechanical obstruction. Although several genes have been described to cause this disease, most patients do not receive a genetic diagnosis. Here, we aim to identify the genetic cause of PIPO in a patient diagnosed with severe intestinal dysmotility shortly after birth. Methods: Whole exome sequencing (WES) was performed in the patient and unaffected parents, in a diagnostic setting. After identification of the potential disease-causing variant, its functional consequences were determined in vitro and in vivo. For this, expression constructs with and without the causing variant, were overexpressed in HEK293 cells. To investigate the role of the candidate gene in GI development and function, a zebrafish model was generated where its expression was disrupted using CRISPR/Cas9 editing. Results: WES analysis identified a de novo heterozygous deletion in TFAP2B (NM_003221.4:c.602-5_606delTCTAGTTCCA), classified as a variant of unknown significance. In vitro studies showed that this deletion affects RNA splicing and results in loss of exon 4, leading to the appearance of a premature stop codon and absence of TFAP2B protein. Disruption of tfap2b in zebrafish led to decreased enteric neuronal numbers and delayed transit time. However, no defects in neuronal differentiation were detected. tfap2b crispants also showed decreased levels of ednrbb mRNA, a downstream target of tfap2b. Conclusion: We showed that TFAP2B haploinsufficiency leads to reduced neuronal numbers and GI dysmotility, suggesting for the first time, that this gene is involved in PIPO pathogenesis.

9.
Clin Transl Gastroenterol ; 13(6): e00499, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584320

RESUMEN

OBJECTIVES: To improve colorectal cancer (CRC) survival and lower incidence rates, colonoscopy and/or fecal immunochemical test screening are widely implemented. Although candidate DNA methylation biomarkers have been published to improve or complement the fecal immunochemical test, clinical translation is limited. We describe technical and methodological problems encountered after a systematic literature search and provide recommendations to increase (clinical) value and decrease research waste in biomarker research. In addition, we present current evidence for diagnostic CRC DNA methylation biomarkers. METHODS: A systematic literature search identified 331 diagnostic DNA methylation marker studies published before November 2020 in PubMed, EMBASE, Cochrane Library, and Google Scholar. For 136 bodily fluid studies, extended data extraction was performed. STARD criteria and level of evidence were registered to assess reporting quality and strength for clinical translation. RESULTS: Our systematic literature search revealed multiple issues that hamper the development of DNA methylation biomarkers for CRC diagnosis, including methodological and technical heterogeneity and lack of validation or clinical translation. For example, clinical translation and independent validation were limited, with 100 of 434 markers (23%) studied in bodily fluids, 3 of 434 markers (0.7%) translated into clinical tests, and independent validation for 92 of 411 tissue markers (22%) and 59 of 100 bodily fluids markers (59%). DISCUSSION: This systematic literature search revealed that major requirements to develop clinically relevant diagnostic CRC DNA methylation markers are often lacking. To avoid the resulting research waste, clinical needs, intended biomarker use, and independent validation should be better considered before study design. In addition, improved reporting quality would facilitate meta-analysis, thereby increasing the level of evidence and enabling clinical translation.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Biomarcadores de Tumor/genética , Colonoscopía , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Humanos , Sangre Oculta
10.
Clin Epigenetics ; 14(1): 56, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477541

RESUMEN

BACKGROUND: DNA methylation biomarkers for early detection, risk stratification and treatment response in cancer have been of great interest over the past decades. Nevertheless, clinical implementation of these biomarkers is limited, as only < 1% of the identified biomarkers is translated into a clinical or commercial setting. Technical factors such as a suboptimal genomic location of the assay and inefficient primer or probe design have been emphasized as important pitfalls in biomarker research. Here, we use eleven diagnostic DNA methylation biomarkers for colorectal cancer (ALX4, APC, CDKN2A, MGMT, MLH1, NDRG4, SDC2, SFRP1, SFRP2, TFPI1 and VIM), previously described in a systematic literature search, to evaluate these pitfalls. RESULTS: To assess the genomic assay location, the optimal genomic locations according to TCGA data were extracted and compared to the genomic locations used in the published assays for all eleven biomarkers. In addition, all primers and probes were technically evaluated according to several criteria, based on literature and expert opinion. Both assay location and assay design quality varied widely among studies. CONCLUSIONS: Large variation in both assay location and design hinders the development of future DNA methylation biomarkers as well as inter-study comparability.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Humanos , Reacción en Cadena de la Polimerasa
11.
Neurogastroenterol Motil ; 34(2): e14215, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34236124

RESUMEN

BACKGROUND: The enteric nervous system (ENS) is an extensive neural network embedded in the wall of the gastrointestinal tract that regulates digestive function and gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neurons and enteric glial cells. In vitro techniques allow simplified investigation of ENS function, and different culture methods have been developed over the years helping to understand the role of ENS cells in health and disease. PURPOSE: This review focuses on summarizing and comparing available culture protocols for the generation of primary ENS cells from adult mice, including dissection of intestinal segments, enzymatic digestions, surface coatings, and culture media. In addition, the potential of human ENS cultures is also discussed.


Asunto(s)
Sistema Nervioso Entérico , Animales , Encéfalo , Técnicas de Cultivo de Célula , Sistema Nervioso Entérico/metabolismo , Ratones , Neuroglía , Neuronas/metabolismo
12.
Autophagy ; 18(8): 1898-1914, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34904929

RESUMEN

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy. Paradoxically, in several cancer types, mutations or loss of essential autophagy genes have been reported that are associated with earlier onset of tumor growth. However, to our knowledge, the phenotypic and therapeutic consequences of autophagy deficiency have remained unexplored. In this study, we determined autophagy-defects in head and neck squamous cell carcinoma (HNSCC) and observed that expression of ATG12 (autophagy related 12) was lost in 25%-40% of HNSCC. In line, ATG12 loss is associated with absence of hypoxia, as determined by pimonidazole immunohistochemistry. Hence, ATG12 loss is associated with improved prognosis after therapy in two independent HNSCC cohorts and 7 additional cancer types. In vivo, ATG12 targeting resulted in decreased hypoxia tolerance, increased necrosis and sensitivity of the tumor to therapy, but in vitro ATG12-deficient cells displayed enhanced survival in nutrient-rich culture medium. Besides oxygen, delivery of glucose was hampered in hypoxic regions in vivo, which increases the reliance of cells on other carbon sources (e.g., L-glutamine). We observed decreased intracellular L-glutamine levels in ATG12-deficient cells during hypoxia and increased cell killing after L-glutamine depletion, indicating a central role for ATG12 in maintaining L-glutamine homeostasis. Our results demonstrate that ATG12low tumors represent a phenotypically different subtype that, due to the lowered hypoxia tolerance, display a favorable outcome after therapy.Abbreviations: ARCON:accelerated radiotherapy with carbogen and nicotinamide; ATG: autophagy related; BrdUrd: bromodeoxyuridine; CA9/CAIX: carbonic anhydrase 9; HIF1A/HIF1α: hypoxia inducible factor 1 subunit alpha; HNSCC: head and neck squamous cell carcinoma; HPV: human papilloma virus; HR: hazard ratio; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; mRNA: messenger ribonucleic acid; PCR: polymerase chain reaction; SLC2A1/GLUT1: solute carrier family 2 member 1; TCGA: the Cancer Genome Atlas; TME: tumor microenvironment; UTR: untranslated region; VEGF: vascular endothelial growth factor.


Asunto(s)
Proteína 12 Relacionada con la Autofagia , Glutamina , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Fibroblastos/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Hipoxia Tumoral , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Sci Rep ; 11(1): 16432, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385566

RESUMEN

WHO grade I meningiomas occasionally show regrowth after radiosurgical treatment, which cannot be predicted by clinical features. There is increasing evidence that certain biomarkers are associated with regrowth of meningiomas. The aim of this retrospective study was to asses if these biomarkers could be of value to predict regrowth of WHO grade I meningiomas after additive radiosurgery. Forty-four patients with WHO grade I meningiomas who underwent additive radiosurgical treatment between 2002 and 2015 after Simpson IV resection were included in this study, of which 8 showed regrowth. Median follow-up time was 64 months (range 24-137 months). Tumors were analyzed for the proliferation marker Ki-67 by immunohistochemistry and for deletion of 1p36 by fluorescence in situ hybridization (FISH). Furthermore, genomic DNA was analyzed for promoter hypermethylation of the genes NDRG1-4, SFRP1, HOXA9 and MGMT. Comparison of meningiomas with and without regrowth after radiosurgery revealed that loss of 1p36 (p = 0.001) and hypermethylation of NDRG1 (p = 0.046) were correlated with regrowth free survival. Loss of 1p36 was the only parameter that was significantly associated with meningioma regrowth after multivariate analysis (p = 0.01). Assessment of 1p36 loss in tumor tissue prior to radiosurgery might be considered an indicator of prognosis/regrowth. However, this finding has to be validated in an independent larger set of tumors.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 1 , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/radioterapia , Meningioma/patología , Meningioma/radioterapia , Recurrencia Local de Neoplasia/patología , Radiocirugia/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tasa de Supervivencia , Resultado del Tratamiento , Organización Mundial de la Salud
14.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188586, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34216725

RESUMEN

Modeling colorectal cancer (CRC) using organoids has burgeoned in the last decade, providing enhanced in vitro models to study the development and possible treatment options for this type of cancer. In this review, we describe both normal and CRC intestinal organoid models and their utility in the cancer research field. Besides highlighting studies that develop epithelial CRC organoid models, i.e. organoids without tumor microenvironment (TME) cellular components, we emphasize on the need for TME in CRC modeling, to help reduce translational disparities in this area. Also, we discuss the utilization of CRC organoids derived from pluripotent stem cells, as well as their potential to be used in cancer research. Finally, limitations and challenges in the current CRC organoids field, are discussed.


Asunto(s)
Neoplasias Colorrectales/inmunología , Intestinos/inmunología , Organoides/inmunología , Microambiente Tumoral/inmunología , Humanos
15.
EMBO Rep ; 22(6): e51913, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890711

RESUMEN

The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , Sistema Nervioso Entérico , Proteínas de Unión al Calcio , Neoplasias Colorrectales/genética , Proteínas de la Matriz Extracelular , Humanos , Glicoproteínas de Membrana , Proteínas Musculares , Proteínas del Tejido Nervioso/genética , Neuronas , Microambiente Tumoral
16.
Clin Epigenetics ; 13(1): 80, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858496

RESUMEN

PURPOSE: Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. METHODS: DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. RESULTS: GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. CONCLUSION: In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Metilación de ADN/genética , Detección Precoz del Cáncer/métodos , Epigenómica/métodos , Anciano , Biomarcadores de Tumor/genética , Sistema Nervioso Central/metabolismo , Neoplasias Colorrectales/metabolismo , Epigénesis Genética/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Cell Mol Life Sci ; 78(10): 4713-4733, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770200

RESUMEN

A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.


Asunto(s)
Sistema Nervioso Entérico/patología , Enfermedades Gastrointestinales/etiología , Sistema Inmunológico , Inflamación/fisiopatología , Animales , Enfermedades Gastrointestinales/patología , Humanos
18.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466373

RESUMEN

The role of the nervous system as a contributor in the tumor microenvironment has been recognized in different cancer types, including colorectal cancer (CRC). The gastrointestinal tract is a highly innervated organ system, which is not only innervated by the autonomic nervous system, but also contains an extensive nervous system of its own; the enteric nervous system (ENS). The ENS is important for gut function and homeostasis by regulating processes such as fluid absorption, blood flow, and gut motility. Dysfunction of the ENS has been linked with multiple gastrointestinal diseases, such as Hirschsprung disease and inflammatory bowel disease, and even with neurodegenerative disorders. How the extrinsic and intrinsic innervation of the gut contributes to CRC is not fully understood, although a mutual relationship between cancer cells and nerves has been described. Nerves enhance cancer progression through the secretion of neurotransmitters and neuropeptides, and cancer cells are capable of stimulating nerve growth. This review summarizes and discusses the nervous system innervation of the gastrointestinal tract and how it can influence carcinogenesis, and vice versa. Lastly, the therapeutic potential of these novel insights is discussed.

19.
Eur Urol Oncol ; 4(2): 215-226, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31402218

RESUMEN

CONTEXT: The 5-yr survival of early-stage renal cell carcinoma (RCC) is approximately 93%, but once metastasised, the 5-yr survival plummets to 12%, indicating that early RCC detection is crucial to improvement in survival. DNA methylation biomarkers have been suggested to be of potential diagnostic value; however, their current state of clinical translation is unclear and a comprehensive overview is lacking. OBJECTIVE: To systematically review and summarise all literature regarding diagnostic DNA methylation biomarkers for RCC. EVIDENCE ACQUISITION: We performed a systematic literature review of PubMed, EMBASE, Medline, and Google Scholar up to January 2019, according to the Preferred Reporting Items for Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines. Included studies were scored according to the Standards for Reporting of Diagnostic Accuracy Studies (STARD) criteria. Forest plots were generated to summarise diagnostic performance of all biomarkers. Level of evidence (LoE) and potential risk of bias were determined for all included studies. EVIDENCE SYNTHESIS: After selection, 19 articles reporting on 44 diagnostic DNA methylation biomarkers and 11 multimarker panels were included; however, only 15 biomarkers were independently validated. STARD scores varied from 4 to 13 out of 23 points, with a median of 10 points. Large variation in subgroups, methods, and primer locations was observed. None of the reported biomarkers exceeded LoE III, and the majority of studies reported inadequately. CONCLUSIONS: None of the reported biomarkers exceeded LoE III, indicating their limited clinical utility. Moreover, study reproducibility and further development of these RCC biomarkers are greatly hampered by inadequate reporting. PATIENT SUMMARY: In this report, we reviewed whether specific biomarkers could be used to diagnose the most common form of kidney cancer. We conclude that due to limited evidence and reporting inconsistencies, none of these biomarkers can be used in clinical practice, and further development towards clinical use is hindered.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Metilación de ADN , Pruebas Diagnósticas de Rutina , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Reproducibilidad de los Resultados
20.
Dis Esophagus ; 33(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32591823

RESUMEN

Despite the use of multimodal treatment, survival of esophageal cancer (EC) patients remains poor. One proposed explanation for the relatively poor response to cytotoxic chemotherapy is intratumor heterogeneity. The aim was to establish a statistical model to objectively measure intratumor heterogeneity of the proportion of tumor (IHPoT) and to use this newly developed method to measure IHPoT in the pretreatment biopsies from from EC patients recruited to the OE02 trial. A statistical mixed effect model (MEM) was established for estimating IHPoT based on variation in hematoxylin/eosin (HE) stained pretreatment biopsy pieces from the same individual in 218 OE02 trial patients (103 treated by chemotherapy and surgery (chemo+surgery); 115 patients treated by surgery alone). The relationship between IHPoT, prognosis, chemotherapy survival benefit, and clinicopathological variables was assessed. About 97 (44.5%) and 121 (55.5%) ECs showed high and low IHPoT, respectively. There was no significant difference in IHPoT between surgery (median [range], 0.1637 [0-3.17]) and chemo+surgery (median [range], 0.1692 [0-2.69]) patients (P = 0.43). Chemo+surgery patients with low IHPoT had a significantly longer survival than surgery patients (HR = 1.81, 95% CI: 1.20-2.75, P = 0.005). There was no survival difference between chemo+surgery and surgery patients with high IHPoT (HR = 1.15, 95% CI: 0.72-1.81, P = 0.566). This is the first study suggesting that IHPoT measured in the pretreatment biopsy can predict chemotherapy survival benefit in EC patients. IHPoT may represent a clinically useful biomarker for patient treatment stratification. Future studies should determine if pathologists can reliably estimate IHPoT.


Asunto(s)
Neoplasias Esofágicas , Terapia Neoadyuvante , Biopsia , Quimioterapia Adyuvante , Neoplasias Esofágicas/tratamiento farmacológico , Humanos , Pronóstico , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA