Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37428185

RESUMEN

Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.


Asunto(s)
Alérgenos , Rinitis Alérgica Perenne , Humanos , Rinitis Alérgica Perenne/patología , Mucosa Nasal , Células Mieloides/patología , Inflamación/patología
4.
Blood ; 142(13): 1113-1130, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37369082

RESUMEN

Although absence of interleukin-7 (IL-7) signaling completely abrogates T and B lymphopoiesis in mice, patients with severe combined immunodeficiency caused by mutations in the IL-7 receptor α chain (IL-7Rα) still generate peripheral blood B cells. Consequently, human B lymphopoiesis has been thought to be independent of IL-7 signaling. Using flow cytometric analysis and single-cell RNA sequencing of bone marrow samples from healthy controls and patients who are IL-7Rα deficient, in combination with in vitro modeling of human B-cell differentiation, we demonstrate that IL-7R signaling plays a crucial role in human B lymphopoiesis. IL-7 drives proliferation and expansion of early B-cell progenitors but not of pre-BII large cells and has a limited role in the prevention of cell death. Furthermore, IL-7 guides cell fate decisions by enhancing the expression of BACH2, EBF1, and PAX5, which jointly orchestrate the specification and commitment of early B-cell progenitors. In line with this observation, early B-cell progenitors of patients with IL-7Rα deficiency still expressed myeloid-specific genes. Collectively, our results unveil a previously unknown role for IL-7 signaling in promoting the B-lymphoid fate and expanding early human B-cell progenitors while defining important differences between mice and humans. Our results have implications for hematopoietic stem cell transplantation strategies in patients with T- B+ severe combined immunodeficiency and provide insights into the role of IL-7R signaling in leukemogenesis.


Asunto(s)
Interleucina-7 , Inmunodeficiencia Combinada Grave , Humanos , Animales , Ratones , Interleucina-7/metabolismo , Receptores de Interleucina-7/genética , Diferenciación Celular , Hematopoyesis
5.
Front Pharmacol ; 14: 1076574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937863

RESUMEN

Background: Inter-individual differences in drug response based on genetic variations can lead to drug toxicity and treatment inefficacy. A large part of this variability is caused by genetic variants in pharmacogenes. Unfortunately, the Single Nucleotide Variant arrays currently used in clinical pharmacogenomic (PGx) testing are unable to detect all genetic variability in these genes. Long-read sequencing, on the other hand, has been shown to be able to resolve complex (pharmaco) genes. In this study we aimed to assess the value of long-read sequencing for research and clinical PGx focusing on the important and highly polymorphic CYP2C19 gene. Methods and Results: With a capture-based long-read sequencing panel we were able to characterize the entire region and assign variants to their allele of origin (phasing), resulting in the identification of 813 unique variants in 37 samples. To assess the clinical utility of this data we have compared the performance of three different *-allele tools (Aldy, PharmCat and PharmaKU) which are specifically designed to assign haplotypes to pharmacogenes based on all input variants. Conclusion: We conclude that long-read sequencing can improve our ability to characterize the CYP2C19 locus, help to identify novel haplotypes and that *-allele tools are a useful asset in phenotype prediction. Ultimately, this approach could help to better predict an individual's drug response and improve therapy outcomes. However, the added value in clinical PGx might currently be limited.

6.
Pharmacogenomics J ; 22(1): 75-81, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741133

RESUMEN

The use of pharmacogenomics in clinical practice is becoming standard of care. However, due to the complex genetic makeup of pharmacogenes, not all genetic variation is currently accounted for. Here, we show the utility of long-read sequencing to resolve complex pharmacogenes by analyzing a well-characterised sample. This data consists of long reads that were processed to resolve phased haploblocks. 73% of pharmacogenes were fully covered in one phased haploblock, including 9/15 genes that are 100% complex. Variant calling accuracy in the pharmacogenes was high, with 99.8% recall and 100% precision for SNVs and 98.7% precision and 98.0% recall for Indels. For the majority of gene-drug interactions in the DPWG and CPIC guidelines, the associated genes could be fully resolved (62% and 63% respectively). Together, these findings suggest that long-read sequencing data offers promising opportunities in elucidating complex pharmacogenes and haplotype phasing while maintaining accurate variant calling.


Asunto(s)
Farmacogenética/métodos , Análisis de Secuencia de ADN/métodos , Variación Genética , Genoma Humano , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reproducibilidad de los Resultados
7.
PLoS Pathog ; 17(9): e1009904, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543350

RESUMEN

The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Animales , Insectos Vectores/parasitología , RNA-Seq , Glándulas Salivales/parasitología
8.
Sci Transl Med ; 13(603)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290055

RESUMEN

Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.


Asunto(s)
Citocromo P-450 CYP2D6 , Preparaciones Farmacéuticas , Alelos , Citocromo P-450 CYP2D6/genética , Genotipo , Humanos , Estudios Prospectivos , Tamoxifeno
9.
Nat Genet ; 53(8): 1207-1220, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267371

RESUMEN

In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.


Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/fisiología , Distrofia Muscular Facioescapulohumeral/patología , Proteína p53 Supresora de Tumor/genética , Animales , Diferenciación Celular/genética , Reprogramación Celular , Daño del ADN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Nucleares/genética , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Cigoto/citología
10.
Genome Med ; 13(1): 45, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761980

RESUMEN

BACKGROUND: Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. METHODS: Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. RESULTS: We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. CONCLUSIONS: The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub ( https://github.com/LUMC/CACTUS ).


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Neoplasias/genética , Análisis de la Célula Individual , Programas Informáticos , Células Clonales , Análisis por Conglomerados , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Folicular/genética , Modelos Estadísticos , Reproducibilidad de los Resultados , Secuenciación del Exoma
11.
Cell Rep ; 17(3): 783-798, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732854

RESUMEN

NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.


Asunto(s)
Daño del ADN , Factores de Transcripción GATA/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Daño del ADN/genética , Reparación del ADN/genética , Elementos de Facilitación Genéticos/genética , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Represoras , Proteínas Supresoras de Tumor/química
12.
Genome Biol ; 17: 36, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26922637

RESUMEN

BACKGROUND: Transcription factor-dependent cellular reprogramming is integral to normal development and is central to production of induced pluripotent stem cells. This process typically requires pioneer transcription factors (TFs) to induce de novo formation of enhancers at previously closed chromatin. Mechanistic information on this process is currently sparse. RESULTS: Here we explore the mechanistic basis by which GATA3 functions as a pioneer TF in a cellular reprogramming event relevant to breast cancer, the mesenchymal to epithelial transition (MET). In some instances, GATA3 binds previously inaccessible chromatin, characterized by stable, positioned nucleosomes where it induces nucleosome eviction, alters local histone modifications, and remodels local chromatin architecture. At other loci, GATA3 binding induces nucleosome sliding without concomitant generation of accessible chromatin. Deletion of the transactivation domain retains the chromatin binding ability of GATA3 but cripples chromatin reprogramming ability, resulting in failure to induce MET. CONCLUSIONS: These data provide mechanistic insights into GATA3-mediated chromatin reprogramming during MET, and suggest unexpected complexity to TF pioneering. Successful reprogramming requires stable binding to a nucleosomal site; activation domain-dependent recruitment of co-factors including BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex; and appropriate genomic context. The resulting model provides a new conceptual framework for de novo enhancer establishment by a pioneer TF.


Asunto(s)
Neoplasias de la Mama/genética , Reprogramación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Factor de Transcripción GATA3/genética , Neoplasias de la Mama/patología , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nucleosomas/genética , Factores de Transcripción/genética
13.
Front Genet ; 5: 428, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25538734

RESUMEN

Deoxyribonucleic acid methylation is a long known epigenetic mark involved in many biological processes and the 'readers' of this mark belong to several distinct protein families that 'read' and 'translate' the methylation mark into a function. Methyl-CpG binding domain proteins belong to one of these families that are associated with transcriptional activation/repression, regulation of chromatin structure, pluripotency, development, and differentiation. Discovered decades ago, the systematic determination of the genomic binding sites of these readers and their epigenome make-up at a genome-wide level revealed the tip of the functional iceberg. This review focuses on two members of the methyl binding proteins, namely MBD2 and MBD3 that reside in very similar complexes, yet appear to have very different biological roles. We provide a comprehensive comparison of their genome-wide binding features and emerging roles in gene regulation.

14.
PLoS One ; 9(6): e99603, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927503

RESUMEN

MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼ 400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , Sitios de Unión , Islas de CpG , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
15.
Biol Open ; 2(10): 1070-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167717

RESUMEN

Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS-275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.

16.
Cell ; 149(3): 590-604, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541430

RESUMEN

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Código de Histonas , Transcripción Genética , Animales , Diferenciación Celular , Epigénesis Genética , Genes myc , Histonas/metabolismo , Metilación , Ratones , ARN Polimerasa II/metabolismo , Transcriptoma
17.
J Transl Med ; 7: 48, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19538739

RESUMEN

BACKGROUND: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. METHODS: Cell cycle, apoptosis and differentiation analyses; western blots. RESULTS: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. CONCLUSION: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Leucemia Mieloide Aguda/patología , Fenoles/farmacología , Compuestos de Bencidrilo , Antígeno CD11c/metabolismo , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas , Proteína Letal Asociada a bcl/metabolismo , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...