Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 205(11): 1290-1299, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35290169

RESUMEN

Rationale: GM-CSF (granulocyte-macrophage colony-stimulating factor) has emerged as a promising target against the hyperactive host immune response associated with coronavirus disease (COVID-19). Objectives: We sought to investigate the efficacy and safety of gimsilumab, an anti-GM-CSF monoclonal antibody, for the treatment of hospitalized patients with elevated inflammatory markers and hypoxemia secondary to COVID-19. Methods: We conducted a 24-week randomized, double-blind, placebo-controlled trial, BREATHE (Better Respiratory Education and Treatment Help Empower), at 21 locations in the United States. Patients were randomized 1:1 to receive two doses of intravenous gimsilumab or placebo 1 week apart. The primary endpoint was all-cause mortality rate at Day 43. Key secondary outcomes were ventilator-free survival rate, ventilator-free days, and time to hospital discharge. Enrollment was halted early for futility based on an interim analysis. Measurements and Main Results: Of the planned 270 patients, 225 were randomized and dosed; 44.9% of patients were Hispanic or Latino. The gimsilumab and placebo groups experienced an all-cause mortality rate at Day 43 of 28.3% and 23.2%, respectively (adjusted difference = 5% vs. placebo; 95% confidence interval [-6 to 17]; P = 0.377). Overall mortality rates at 24 weeks were similar across the treatment arms. The key secondary endpoints demonstrated no significant differences between groups. Despite the high background use of corticosteroids and anticoagulants, adverse events were generally balanced between treatment groups. Conclusions: Gimsilumab did not improve mortality or other key clinical outcomes in patients with COVID-19 pneumonia and evidence of systemic inflammation. The utility of anti-GM-CSF therapy for COVID-19 remains unclear. Clinical trial registered with www.clinicaltrials.gov (NCT04351243).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego , Humanos , Inflamación
2.
Case Rep Med ; 2016: 1391789, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891149

RESUMEN

Nondiphtheria Corynebacterium species are often dismissed as culture contaminants, but they have recently become increasingly recognized as pathologic organisms. We present the case of a 48-year-old male patient on chronic prednisone therapy for rheumatoid arthritis with a history of mitral valve replacement with prosthetic valve. He presented with fever, dizziness, dyspnea on exertion, intermittent chest pain, and palpitations. Transesophageal echocardiography revealed two medium-sized densities along the inner aspect of the sewing ring and one larger density along the atrial surface of the sewing ring consistent with vegetation. Two separate blood cultures grew Corynebacterium propinquum, which were sensitive to ceftriaxone but highly resistant to vancomycin and daptomycin. The patient completed a course of ceftriaxone and repeat TEE study and after 6 weeks demonstrated near complete resolution of the vegetation. To our knowledge, this case represents the first in the literature of Corynebacterium propinquum causing prosthetic valve endocarditis. The ability of these organisms to cause deep-seated systemic infections should be recognized, especially in immune-compromised patients.

3.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 11): 1218-23, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21041940

RESUMEN

The kinesin-14, Ncd, is a cellular motor involved in microtubule spindle assembly and contraction during mitosis and meiosis. Like other members of the kinesin superfamily, Ncd consists of two motor heads connected by a linker and a long cargo-carrying stalk. The motor heads hydrolyze ATP to ADP to provide the power stroke that moves them and the cargo along the microtubule. Whereas conventional kinesins move processively along the sense of the microtubule right-handed helix, Ncd moves in the opposite direction, apparently using a different motive mechanism. According to the current model, the microtubule-binding state of Ncd is bound by one head and then released during the motive cycle. This is distinguished from the binding states of conventional kinesins, in which the motor heads are always bound in the motive cycle with alternating one-head and two-head binding. The objective was to determine the extent of binding, the binding states of Ncd in the presence of an ATP analogue, AMPPNP, and whether the binding is cooperative. Small-angle neutron scattering (SANS) of microtubules decorated with a deuterated Ncd construct, Ncd281, in solution containing 42% D(2)O was used. These conditions render the microtubule `invisible' to SANS, while amplifying the SANS from the Ncd constructs. In the presence of AMPPNP, 75% of Ncd281 was not bound. The remainder was bound cooperatively by one of its motor heads to the microtubule.


Asunto(s)
Adenilil Imidodifosfato/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animales , Drosophila melanogaster/metabolismo , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Soluciones
4.
Pediatrics ; 122(6): e1282-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19047227

RESUMEN

In this article we discuss the medical diagnoses underlying the most common lawsuits involving pediatricians in the United States. Where applicable, specific and general risk-management techniques are noted as a means of increasing patient safety and reducing the risk of medical malpractice exposure.


Asunto(s)
Errores Diagnósticos/estadística & datos numéricos , Mala Praxis/estadística & datos numéricos , Pediatría/legislación & jurisprudencia , Gestión de Riesgos/legislación & jurisprudencia , Femenino , Humanos , Masculino , Pautas de la Práctica en Medicina/legislación & jurisprudencia , Estados Unidos
6.
Biophys J ; 90(7): 2436-44, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16415057

RESUMEN

The determination of crystal structures of the troponin complex (Takeda et al. 2003. Nature. 424:35-41; Vinogradova et al. 2005. Proc. Natl. Acad. Sci. USA. 102:5038-5043) has advanced knowledge of the regulation of muscle contraction at the molecular level. However, there are domains important for actin binding that are not visualized. We present evidence that the C-terminal region of troponin I (TnI residues 135-182) is flexible in solution and has no stable secondary structure. We use NMR spectroscopy to observe the backbone dynamics of skeletal [2H, 13C, 15N]-TnI in the troponin complex in the presence of Ca2+ or EGTA/Mg2+. Residues in this region give stronger signals than the remainder of TnI, and chemical shift index values indicate little secondary structure, suggesting a very flexible region. This is confirmed by NMR relaxation measurements. Unlike TnC and other regions of TnI in the complex, the C-terminal region of TnI is not affected by Ca2+ binding. Relaxation measurements and reduced spectral density analysis are consistent with the C-terminal region of TnI being a tethered domain connected to the rest of the troponin complex by a flexible linker, residues 137-146, followed by a collapsed region with at most nascent secondary structure.


Asunto(s)
Troponina I/química , Troponina/química , Actinas/química , Actinas/metabolismo , Animales , Biofisica/métodos , Calcio/química , Pollos , Cristalografía por Rayos X , Cisteína/química , Ácido Egtácico/química , Eliminación de Gen , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Estadísticos , Contracción Muscular , Músculo Esquelético/metabolismo , Mutación , Plásmidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Troponina C/química
7.
J Biol Chem ; 280(23): 21924-32, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15826946

RESUMEN

With the recent advances in structure determination of the troponin complex, it becomes even more important to understand the dynamics of its components and how they are affected by the presence or absence of Ca(2+). We used NMR techniques to study the backbone dynamics of skeletal troponin C (TnC) in the complex. Transverse relaxation-optimized spectroscopy pulse sequences and deuteration of TnC were essential to assign most of the TnC residues in the complex. Backbone amide (15)N relaxation times were measured in the presence of Ca(2+) or EGTA/Mg(2+). T(1) relaxation times could not be interpreted precisely, because for a molecule of this size, the longitudinal backbone amide (15)N relaxation rate due to chemical shift anisotropy and dipole-dipole interactions becomes too small, and other relaxation mechanisms become relevant. T(2) relaxation times were of the expected magnitude for a complex of this size, and most of the variation of T(2) times in the presence of Ca(2+) could be explained by the anisotropy of the complex, suggesting a relatively rigid molecule. The only exception was EF-hand site III and helix F immediately after, which are more flexible than the rest of the molecule. In the presence of EGTA/Mg(2+), relaxation times for residues in the C-domain of TnC are very similar to values in the presence of Ca(2+), whereas the N-domain becomes more flexible. Taken together with the high flexibility of the linker between the two domains, we concluded that in the absence of Ca(2+), the N-domain of TnC moves independently from the rest of the complex.


Asunto(s)
Calcio/metabolismo , Troponina C/química , Animales , Anisotropía , Pollos , Cristalografía por Rayos X , Ácido Egtácico/química , Escherichia coli/metabolismo , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Estadísticos , Músculo Esquelético/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Troponina/química , Troponina C/metabolismo
8.
Proc Natl Acad Sci U S A ; 102(14): 5038-43, 2005 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-15784741

RESUMEN

Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.


Asunto(s)
Calcio/metabolismo , Troponina C/química , Troponina C/metabolismo , Troponina T/química , Troponina T/metabolismo , Animales , Fenómenos Biofísicos , Biofisica , Pollos , Cristalografía por Rayos X , Detergentes , Técnicas In Vitro , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
J Mol Biol ; 345(4): 797-815, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15588827

RESUMEN

Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.


Asunto(s)
Pollos , Músculo Esquelético/química , Difracción de Neutrones , Troponina/química , Troponina/metabolismo , Animales , Calcio/metabolismo , Calcio/farmacología , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miocardio/química , Unión Proteica , Estructura Cuaternaria de Proteína/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Soluciones/química , Difracción de Rayos X
10.
Anal Biochem ; 300(1): 77-86, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11743694

RESUMEN

Three different methods to quantitate tryptophan (Trp) analogue incorporation into recombinant proteins are described: first, spectroscopic analysis based on a linear combination of the absorption spectra of the aromatic residues in the denatured Trp-containing or analogue-substituted protein; second, chromatographic separation of analogue-substituted and Trp-containing proteins by HPLC; and third, mass spectrum analysis of the mixture of analogue-substituted and Trp-containing proteins. An accurate estimate of analogue incorporation in single-Trp proteins can be obtained directly by either analysis of the absorption spectrum or HPLC chromatography. While analysis of the absorption spectrum or HPLC chromatogram can provide an assessment of the average level of analogue incorporation for proteins that contain two or more Trp residues, mass spectroscopy analysis of peptides generated by protease digestion and separated by HPLC provides a general method for a complete quantitative description of the distribution of analogue incorporation. The more complex analysis by mass spectroscopy becomes important for multi-Trp proteins because the distribution of analogue versus Trp-containing polypeptide chains may not be the same as that predicted on the basis of average level of analogue incorporation.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Proteínas de Drosophila , Proteínas Recombinantes/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Triptófano/análisis , Proteína Receptora de AMP Cíclico/análisis , Escherichia coli , Cinesinas/análisis , Espectrofotometría Atómica/métodos , Triptófano/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...