Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(50): 35040-35049, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38046627

RESUMEN

Nanodroplets' explosive vaporization triggered by absorption of laser pulses produces very large volume changes. These volume changes are two orders of magnitude higher than those of thermoelastic expansion generated by equivalent laser pulses, and should generate correspondingly higher photoacoustic waves (PAW). The generation of intense PAWs is desirable in photoacoustic tomography (PAT) to increase sensitivity. The biocompatibility and simplicity of nanodroplets obtained by sonication of perfluoropentane (PFP) in an aqueous solution of bovine serum albumin (BSA) containing a dye make them particularly appealing for use as contrast agents in clinical applications of PAT. Their usefulness depends on stability and reproducible vaporization of nanodroplets (liquid PFP inside) to microbubbles (gaseous PFP inside), and reversible condensation to nanodroplets. This work incorporates porphyrins with fluorinated chains and BSA labelled with fluorescent probes in PFP nanodroplets to investigate the structure and properties of such nanodroplets. Droplets prepared with average diameters in the 400-1000 nm range vaporize when exposed to nanosecond laser pulses with fluences above 3 mJ cm-2 and resist coalescence. The fluorinated chains are likely responsible for the low vaporization threshold, ∼2.5 mJ cm-2, which was obtained from the laser fluence dependence of the photoacoustic wave amplitudes. Only ca. 10% of the droplets incorporate fluorinated porphyrins. Nevertheless, PAWs generated with nanodroplets are ten times higher than those generated by aqueous BSA solutions containing an equivalent amount of porphyrin. Remarkably, successive laser pulses result in similar amplification, indicating that the microbubbles revert back to nanodroplets at a rate faster than the laser repetition rate (10 Hz). PFP nanodroplets are promising contrast agents for PAT and their performance increases with properly designed dyes.

2.
Sci Rep ; 13(1): 11667, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468749

RESUMEN

Photodynamic therapy (PDT) with redaporfin stimulates colon carcinoma (CT26), breast (4T1) and melanoma (B16F10) cells to display high levels of CD80 molecules on their surfaces. CD80 overexpression amplifies immunogenicity because it increases same cell (cis) CD80:PD-L1 interactions, which (i) disrupt binding of T-cells PD-1 inhibitory receptors with their ligands (PD-L1) in tumour cells, and (ii) inhibit CTLA-4 inhibitory receptors binding to CD80 in tumour cells. In some cancer cells, redaporfin-PDT also increases CTLA-4 and PD-L1 expressions and virtuous combinations between PDT and immune-checkpoint blockers (ICB) depend on CD80/PD-L1 or CD80/CTLA-4 tumour overexpression ratios post-PDT. This was confirmed using anti-CTLA-4 + PDT combinations to increase survival of mice bearing CT26 tumours, and to regress lung metastases observed with bioluminescence in mice with orthotopic 4T1 tumours. However, the primary 4T1 responded poorly to treatments. Photoacoustic imaging revealed low infiltration of redaporfin in the tumour. Priming the primary tumour with high-intensity (~ 60 bar) photoacoustic waves generated with nanosecond-pulsed lasers and light-to-pressure transducers improved the response of 4T1 tumours to PDT. Penetration-resistant tumours require a combination of approaches to respond to treatments: tumour priming to facilitate drug infiltration, PDT for a strong local effect and a change in immunogenicity, and immunotherapy for a systemic effect.


Asunto(s)
Fotoquimioterapia , Porfirinas , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico , Antígeno B7-H1/metabolismo , Antígenos de Neoplasias , Antígeno B7-1
3.
Photochem Photobiol ; 99(2): 769-776, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564949

RESUMEN

Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.


Asunto(s)
Fotoquimioterapia , Porfirinas , Ratones , Animales , Fotoquimioterapia/métodos , Porfirinas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
4.
ChemMedChem ; 15(24): 2562-2568, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33211372

RESUMEN

Virtual events are flourishing with the world lockdown due to the COVID-19 pandemic. As a result of the cancelation or postponement of scheduled physical meetings, a revolution in medicinal chemistry scientific meetings occurred, leading to an increase in new strategies to share science. One example are online events, namely e-schools or webinars. Taking this into consideration, we decided to promote the MedChemTrain e-School 2020, a virtual event aiming to bring together the scientific community and share some updates in the medicinal chemistry field. After organizing this free event, with more than 1.4 thousand participants worldwide, we decided to share some insights about the logistics behind organizing a virtual symposium to help scientists with this new challenge in science communication.


Asunto(s)
COVID-19 , Química Farmacéutica/organización & administración , Neumonía Viral , Comunicación por Videoconferencia/organización & administración , Comunicación , Curriculum , Humanos , Aprendizaje
5.
Photochem Photobiol ; 96(3): 692-698, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32125692

RESUMEN

Predicting the extent of necrosis in photodynamic therapy (PDT) is critical to ensure that the whole tumor is treated but vital structures, such as major blood vessels in the vicinity of the tumor, are spared. The models developed for clinical planning rely on empirical parameters that change with the nature of the photosensitizer and the target tissue. This work presents an in vivo study of the necrosis in the livers of rats due to PDT with a bacteriochlorin photosensitizer named redaporfin using both frontal illumination and interstitial illumination. Various doses of light at 750 nm were delivered 15 min postintravenous administration of redaporfin. Sharp boundaries between necrotic and healthy tissues were found. Frontal illumination allowed for the determination of the photodynamic threshold dose-1.5 × 1019  photons cm-3 -which means that the regions of the tissues exposed to more than 11 mm of ROS evolved to necrosis. Interstitial illumination produced a necrotic radius of 0.7 cm for a light dose of 100 J cm-1 and a redaporfin dose of 0.75 mg kg-1 . The experimental data obtained can be used to inform and improve clinical planning with frontal and interstitial illumination protocols.


Asunto(s)
Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Femenino , Hígado/efectos de los fármacos , Hígado/patología , Necrosis/tratamiento farmacológico , Fármacos Fotosensibilizantes/efectos adversos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...