Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496970

RESUMEN

Gout is a painful form of inflammatory arthritis characterized by the deposition of monosodium urate (MSU) crystals in the joints. The aim of this study was to investigate the effect of peptide P140 on the inflammatory responses in crystal-induced mouse models of gout and cell models including MSU-treated human cells. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. Injection of MSU crystals subcutaneously into the hind paw induced edema and increased pro-inflammatory cytokines levels. Treatment with P140 effectively reduced hypernociception, the neutrophil influx, and pro-inflammatory cytokine levels in these experimental models. Furthermore, P140 modulated neutrophils chemotaxis in vitro and increased apoptosis pathways through augmented caspase 3 activity and reduced NFκB phosphorylation. Moreover, P140 increased the production of the pro-resolving mediator annexin A1 and decreased the expression of the autophagy-related ATG5-ATG12 complex and HSPA8 chaperone protein. Overall, these findings suggest that P140 exerts a significant beneficial effect in a neutrophilic inflammation observed in the model of gout that can be of special interest in the design of new therapeutic strategies.


Asunto(s)
Artritis Gotosa , Gota , Ratones , Humanos , Animales , Ácido Úrico , Fosfopéptidos/farmacología , Gota/tratamiento farmacológico , Gota/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Neutrófilos/metabolismo , Modelos Animales de Enfermedad , Artritis Gotosa/tratamiento farmacológico
2.
PLoS Negl Trop Dis ; 15(2): e0009171, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617596

RESUMEN

Brucella abortus is a Gram-negative bacterium responsible for a worldwide zoonotic infection-Brucellosis, which has been associated with high morbidity rate in humans and severe economic losses in infected livestock. The natural route of infection is through oral and nasal mucosa but the invasion process through host gut mucosa is yet to be understood. Studies have examined the role of NLRP6 (NOD-like receptor family pyrin domain-containing-6 protein) in gut homeostasis and defense against pathogens. Here, we investigated the impact of gut microbiota and NLRP6 in a murine model of Ba oral infection. Nlrp6-/- and wild-type (WT) mice were infected by oral gavage with Ba and tissues samples were collected at different time points. Our results suggest that Ba oral infection leads to significant alterations in gut microbiota. Moreover, Nlrp6-/- mice were more resistant to infection, with decreased CFU in the liver and reduction in gut permeability when compared to the control group. Fecal microbiota transplantation from WT and Nlrp6-/- into germ-free mice reflected the gut permeability phenotype from the donors. Additionally, depletion of gut microbiota by broad-spectrum-antibiotic treatment prevented Ba replication in WT while favoring bacterial growth in Nlrp6-/-. Finally, we observed higher eosinophils in the gut and leukocytes in the blood of infected Nlrp6-/- compared to WT-infected mice, which might be associated to the Nlrp6-/- resistance phenotype. Altogether, these results indicated that gut microbiota composition is the major factor involved in the initial stages of pathogen host replication and partially also by the resistance phenotype observed in Nlrp6 -/- mice regulating host inflammation against Ba infection.


Asunto(s)
Brucelosis/fisiopatología , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Intestinos/fisiopatología , Administración Oral , Animales , Antibacterianos/administración & dosificación , Brucella abortus , Brucelosis/microbiología , Trasplante de Microbiota Fecal , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Permeabilidad , Receptores de Superficie Celular/genética , Organismos Libres de Patógenos Específicos
3.
Pathogens ; 9(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353980

RESUMEN

The ST2 receptor plays an important role in the gut such as permeability regulation, epithelium regeneration, and promoting intestinal immune modulation. Here, we studied the role of ST2 receptor in a murine model of oral infection with Brucella abortus, its influence on gut homeostasis and control of bacterial replication. Balb/c (wild-type, WT) and ST2 deficient mice (ST2-/-) were infected by oral gavage and the results were obtained at 3 and 14 days post infection (dpi). Our results suggest that ST2-/- are more resistant to B. abortus infection, as a lower bacterial colony-forming unit (CFU) was detected in the livers and spleens of knockout mice, when compared to WT. Additionally, we observed an increase in intestinal permeability in WT-infected mice, compared to ST2-/- animals. Breakage of the intestinal epithelial barrier and bacterial dissemination might be associated with the presence of the ST2 receptor; since, in the knockout mice no change in intestinal permeability was observed after infection. Together with enhanced resistance to infection, ST2-/- produced greater levels of IFN-γ and TNF-α in the small intestine, compared to WT mice. Nevertheless, in the systemic model of infection ST2 plays no role in controlling Brucella replication in vivo. Our results suggest that the ST2 receptor is involved in the invasion process of B. abortus by the mucosa in the oral infection model.

4.
J Interferon Cytokine Res ; 39(7): 393-409, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31013453

RESUMEN

The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.


Asunto(s)
Citocinas/biosíntesis , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA