Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959890

RESUMEN

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Nat Genet ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951643

RESUMEN

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.

3.
Nat Commun ; 14(1): 1450, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922513

RESUMEN

Disruption of brain-expressed G protein-coupled receptor-10 (GPR10) causes obesity in animals. Here, we identify multiple rare variants in GPR10 in people with severe obesity and in normal weight controls. These variants impair ligand binding and G protein-dependent signalling in cells. Transgenic mice harbouring a loss of function GPR10 variant found in an individual with obesity, gain excessive weight due to decreased energy expenditure rather than increased food intake. This evidence supports a role for GPR10 in human energy homeostasis. Therapeutic targeting of GPR10 may represent an effective weight-loss strategy.


Asunto(s)
Obesidad , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Metabolismo Energético , Ratones Transgénicos , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Aumento de Peso/genética
4.
Nat Med ; 28(12): 2537-2546, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36536256

RESUMEN

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Asunto(s)
Obesidad Mórbida , Receptor de Serotonina 5-HT2C , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Células HEK293 , Obesidad/genética , Receptor de Serotonina 5-HT2C/genética , Serotonina , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Adaptación Psicológica
6.
Pharmaceutics ; 14(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335996

RESUMEN

In the course of infection and intense endotoxemia processes, induction of a catabolic state leading to weight loss is observed in mice and humans. However, the late effects of acute inflammation on energy homeostasis, regulation of body weight and glucose metabolism are yet to be elucidated. Here, we addressed whether serial intense endotoxemia, characterized by an acute phase response and weight loss, could be an aggravating or predisposing factor to weight gain and associated metabolic complications. Male Swiss Webster mice were submitted to 8 consecutive doses of lipopolysaccharide (10 mg/kg LPS), followed by 10 weeks on a high-fat diet (HFD). LPS-treated mice did not show changes in weight when fed standard chow. However, when challenged by a high-fat diet, LPS-treated mice showed greater weight gain, with larger fat depot areas, increased serum leptin and insulin levels and impaired insulin sensitivity when compared to mice on HFD only. Acute endotoxemia caused a long-lasting increase in mRNA expression of inflammatory markers such as TLR-4, CD14 and serum amyloid A (SAA) in the adipose tissue, which may represent the key factors connecting inflammation to increased susceptibility to weight gain and impaired glucose homeostasis. In an independent experimental model, and using publicly available microarray data from adipose tissue from mice infected with Gram-negative bacteria, we performed gene set enrichment analysis and confirmed upregulation of a set of genes responsible for cell proliferation and inflammation, including TLR-4 and SAA. Together, we showed that conditions leading to intense and recurring endotoxemia, such as common childhood bacterial infections, may resound for a long time and aggravate the effects of a western diet. If confirmed in humans, infections should be considered an additional factor contributing to obesity and type 2 diabetes epidemics.

7.
Open Biol ; 12(3): 210345, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35291877

RESUMEN

Obesity, defined as an excess of adipose tissue that adversely affects health, is a major cause of morbidity and mortality. However, to date, understanding the structure and function of human adipose tissue has been limited by the inability to visualize cellular components due to the innate structure of adipocytes, which are characterized by large lipid droplets. Combining the iDISCO and the CUBIC protocols for whole tissue staining and optical clearing, we developed a protocol to enable immunostaining and clearing of human subcutaneous white adipose tissue (WAT) obtained from individuals with severe obesity. We were able to perform immunolabelling of sympathetic nerve terminals in whole WAT and subsequent optical clearing by eliminating lipids to render the opaque tissue completely transparent. We then used light sheet confocal microscopy to visualize sympathetic innervation of human WAT from obese individuals in a three-dimensional manner. We demonstrate the visualization of sympathetic nerve terminals in human WAT. This protocol can be modified to visualize other structures such as blood vessels involved in the development, maintenance and function of human adipose tissue in health and disease.


Asunto(s)
Tejido Adiposo Blanco , Tejido Adiposo , Adipocitos , Tejido Adiposo Blanco/inervación , Humanos , Obesidad , Sistema Nervioso Simpático/fisiología
8.
J Clin Endocrinol Metab ; 107(6): e2532-e2544, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35137184

RESUMEN

CONTEXT: Genetic variants affecting the nuclear hormone receptor coactivator steroid receptor coactivator, SRC-1, have been identified in people with severe obesity and impair melanocortin signaling in cells and mice. As a result, obese patients with SRC-1 deficiency are being treated with a melanocortin 4 receptor agonist in clinical trials. OBJECTIVE: Here, our aim was to comprehensively describe and characterize the clinical phenotype of SRC-1 variant carriers to facilitate diagnosis and clinical management. METHODS: In genetic studies of 2462 people with severe obesity, we identified 23 rare heterozygous variants in SRC-1. We studied 29 adults and 18 children who were SRC-1 variant carriers and performed measurements of metabolic and endocrine function, liver imaging, and adipose tissue biopsies. Findings in adult SRC-1 variant carriers were compared to 30 age- and body mass index (BMI)-matched controls. RESULTS: The clinical spectrum of SRC-1 variant carriers included increased food intake in children, normal basal metabolic rate, multiple fractures with minimal trauma (40%), persistent diarrhea, partial thyroid hormone resistance, and menorrhagia. Compared to age-, sex-, and BMI-matched controls, adult SRC-1 variant carriers had more severe adipose tissue fibrosis (46.2% vs 7.1% respectively, P = .03) and a suggestion of increased liver fibrosis (5/13 cases vs 2/13 in controls, odds ratio = 3.4), although this was not statistically significant. CONCLUSION: SRC-1 variant carriers exhibit hyperphagia in childhood, severe obesity, and clinical features of partial hormone resistance. The presence of adipose tissue fibrosis and hepatic fibrosis in young patients suggests that close monitoring for the early development of obesity-associated metabolic complications is warranted.


Asunto(s)
Coactivador 1 de Receptor Nuclear , Obesidad Mórbida , Femenino , Fibrosis , Humanos , Masculino , Coactivador 1 de Receptor Nuclear/genética , Obesidad Mórbida/complicaciones , Obesidad Mórbida/genética
9.
N Engl J Med ; 385(17): 1581-1592, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34614324

RESUMEN

BACKGROUND: GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS: We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS: Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS: Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Mutación , Obesidad Infantil/genética , Receptor de Melanocortina Tipo 4/metabolismo , Adolescente , Estatura , Niño , Cromograninas/genética , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Humanos , Masculino , Mutación Missense , Receptores de Tirotropina/metabolismo , Transducción de Señal , Secuenciación del Exoma
10.
Diabetes ; 68(11): 2049-2062, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31439647

RESUMEN

Disruption of the adaptor protein SH2B1 (SH2-B, PSM) is associated with severe obesity, insulin resistance, and neurobehavioral abnormalities in mice and humans. Here, we identify 15 SH2B1 variants in severely obese children. Four obesity-associated human SH2B1 variants lie in the Pleckstrin homology (PH) domain, suggesting that the PH domain is essential for SH2B1's function. We generated a mouse model of a human variant in this domain (P322S). P322S/P322S mice exhibited substantial prenatal lethality. Examination of the P322S/+ metabolic phenotype revealed late-onset glucose intolerance. To circumvent P322S/P322S lethality, mice containing a two-amino acid deletion within the SH2B1 PH domain (ΔP317, R318 [ΔPR]) were studied. Mice homozygous for ΔPR were born at the expected Mendelian ratio and exhibited obesity plus insulin resistance and glucose intolerance beyond that attributable to their increased adiposity. These studies demonstrate that the PH domain plays a crucial role in how SH2B1 controls energy balance and glucose homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adiposidad/genética , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Obesidad Infantil/genética , Dominios Homólogos a Pleckstrina/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Animales , Niño , Preescolar , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Homeostasis/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Obesidad Infantil/metabolismo
11.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002796

RESUMEN

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Asunto(s)
Mutación con Ganancia de Función/genética , Obesidad/patología , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal , Adulto , Anciano , Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , AMP Cíclico/metabolismo , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/metabolismo , beta-Arrestinas/metabolismo
12.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661757

RESUMEN

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Asunto(s)
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animales , Peso Corporal , Línea Celular , Niño , Preescolar , Modelos Animales de Enfermedad , Ingestión de Alimentos , Femenino , Variación Genética/genética , Homeostasis , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Adulto Joven , Pez Cebra
13.
Mol Metab ; 6(10): 1321-1329, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031731

RESUMEN

OBJECTIVE: Pro-opiomelanocortin (POMC)-derived peptides act on neurons expressing the Melanocortin 4 receptor (MC4R) to reduce body weight. Setmelanotide is a highly potent MC4R agonist that leads to weight loss in diet-induced obese animals and in obese individuals with complete POMC deficiency. While POMC deficiency is very rare, 1-5% of severely obese individuals harbor heterozygous mutations in MC4R. We sought to assess the efficacy of Setmelanotide in human MC4R deficiency. METHODS: We studied the effects of Setmelanotide on mutant MC4Rs in cells and the weight loss response to Setmelanotide administration in rodent studies and a human clinical trial. We annotated the functional status of 369 published MC4R variants. RESULTS: In cells, we showed that Setmelanotide is significantly more potent at MC4R than the endogenous ligand alpha-melanocyte stimulating hormone and can disproportionally rescue signaling by a subset of severely impaired MC4R mutants. Wild-type rodents appear more sensitive to Setmelanotide when compared to MC4R heterozygous deficient mice, while MC4R knockout mice fail to respond. In a 28-day Phase 1b clinical trial, Setmelanotide led to weight loss in obese MC4R variant carriers. Patients with POMC defects upstream of MC4R show significantly more weight loss with Setmelanotide than MC4R deficient patients or obese controls. CONCLUSIONS: Setmelanotide led to weight loss in obese people with MC4R deficiency; however, further studies are justified to establish whether Setmelanotide can elicit clinically meaningful weight loss in a subset of the MC4R deficient obese population.


Asunto(s)
Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/deficiencia , alfa-MSH/análogos & derivados , Insuficiencia Suprarrenal/tratamiento farmacológico , Insuficiencia Suprarrenal/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proopiomelanocortina/deficiencia , Proopiomelanocortina/metabolismo , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , alfa-MSH/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...