Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(3): 547-560, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238431

RESUMEN

The mammalian cerebral cortex is anatomically organized into a six-layer motif. It is currently unknown whether a corresponding laminar motif of neuronal activity patterns exists across the cortex. Here we report such a motif in the power of local field potentials (LFPs). Using laminar probes, we recorded LFPs from 14 cortical areas across the cortical hierarchy in five macaque monkeys. The laminar locations of recordings were histologically identified by electrolytic lesions. Across all areas, we found a ubiquitous spectrolaminar pattern characterized by an increasing deep-to-superficial layer gradient of high-frequency power peaking in layers 2/3 and an increasing superficial-to-deep gradient of alpha-beta power peaking in layers 5/6. Laminar recordings from additional species showed that the spectrolaminar pattern is highly preserved among primates-macaque, marmoset and human-but more dissimilar in mouse. Our results suggest the existence of a canonical layer-based and frequency-based mechanism for cortical computation.


Asunto(s)
Corteza Cerebral , Macaca , Humanos , Animales , Ratones , Neuronas/fisiología , Mamíferos
2.
Neuron ; 112(5): 850-863.e6, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38228138

RESUMEN

Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it is often assumed that they share the same neuronal mechanisms. We show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays attentional modulation or WM coding and not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during different task periods. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons and impaired task performance. In contrast, WM period inactivation did not affect attentional modulation or performance and minimally affected WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates and that LPFC-p plays a critical role in feature attention, but not in WM.


Asunto(s)
Atención , Memoria a Corto Plazo , Animales , Memoria a Corto Plazo/fisiología , Atención/fisiología , Macaca , Corteza Prefrontal/fisiología , Neuronas/fisiología
3.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909606

RESUMEN

Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it has been proposed that they share the same neuronal mechanisms. Here we show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays either WM coding or attentional modulation, but not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during the attention or WM periods of the task. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons, and impaired task performance. WM period inactivation did not affect attentional modulation nor performance, and minimally reduced WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates, and that LPFC-p plays a critical role in attention but not WM.

4.
Front Neural Circuits ; 15: 764177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899197

RESUMEN

Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.


Asunto(s)
Memoria a Corto Plazo , Numismática , Animales , Visión Ocular , Vías Visuales , Percepción Visual
6.
Neuron ; 107(1): 38-51.e8, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353253

RESUMEN

Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.


Asunto(s)
Opsinas , Optogenética/métodos , Animales , Encéfalo/fisiología , Macaca , Ratones , Modelos Animales , Neuronas/fisiología
7.
Cereb Cortex ; 30(8): 4544-4562, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32227119

RESUMEN

Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits' ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.


Asunto(s)
Interneuronas/citología , Interneuronas/fisiología , Memoria a Corto Plazo/fisiología , Neocórtex/citología , Neocórtex/fisiología , Animales , Macaca mulatta , Masculino
8.
Nat Commun ; 8: 15471, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569756

RESUMEN

The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features.


Asunto(s)
Memoria/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Percepción Visual/fisiología , Animales , Conducta Animal , Macaca mulatta , Masculino , Movimiento (Física) , Probabilidad , Curva ROC , Análisis y Desempeño de Tareas , Factores de Tiempo
9.
Trends Neurosci ; 40(6): 328-346, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28515011

RESUMEN

Working memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim. A variety of studies report that neurons in prefrontal, parietal, and inferotemporal association cortices show robust sustained activity encoding the location and features of memoranda during WM tasks. However, reports of WM-related sustained activity in early sensory areas are rare, and typically lack stimulus specificity. We propose that robust sustained activity that can support WM coding arises as a property of association cortices downstream from the early stages of sensory processing.


Asunto(s)
Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/diagnóstico por imagen , Humanos
10.
Nat Neurosci ; 17(9): 1255-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108910

RESUMEN

Sustained activity encoding visual working memory representations has been observed in several cortical areas of primates. Where along the visual pathways this activity emerges remains unknown. Here we show in macaques that sustained spiking activity encoding memorized visual motion directions is absent in direction-selective neurons in early visual area middle temporal (MT). However, it is robustly present immediately downstream, in multimodal association area medial superior temporal (MST), as well as and in the lateral prefrontal cortex (LPFC). This sharp emergence of sustained activity along the dorsal visual pathway suggests a functional boundary between early visual areas, which encode sensory inputs, and downstream association areas, which additionally encode mnemonic representations. Moreover, local field potential oscillations in MT encoded the memorized directions and, in the low frequencies, were phase-coherent with LPFC spikes. This suggests that LPFC sustained activity modulates synaptic activity in MT, a putative top-down mechanism by which memory signals influence stimulus processing in early visual cortex.


Asunto(s)
Macaca mulatta/fisiología , Memoria a Corto Plazo/fisiología , Percepción de Movimiento/fisiología , Corteza Prefrontal/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Aprendizaje por Asociación/fisiología , Atención/fisiología , Electrodos Implantados , Macaca mulatta/anatomía & histología , Masculino , Corteza Prefrontal/anatomía & histología , Percepción Espacial/fisiología , Corteza Visual/anatomía & histología
11.
J Vis ; 12(10): 16, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23019121

RESUMEN

Binocular rivalry describes the alternating perception of two competing monocular images. It is hypothesized to arise at multiple levels of the visual pathway due to competition between neuronal populations representing the displayed images. We tested whether an enhanced neural representation of expanding motion yields a bias over other spiral motion (i.e., contraction and rotation) and linear motion stimuli during binocular rivalry. We presented random dot patterns of different motion types (i.e., linear and spiral), matched in contrast and speed, to human subjects through a mirror stereoscope. During spiral rivalry, expansion rivalry periods dominated over those of contraction and rotation, and contraction dominated over rotation. During linear motion rivalry, up, down, left, and right directions had similar rivalry periods. All spiral motions dominated over linear motions. Interestingly, when these motion types rivaled against each other, the rivalry periods of spiral motion slightly decreased while those of linear motion significantly increased. This rivalry also caused the bias for expansion relative to other spirals to disappear. Our results suggest a correlation between neuronal representations of different moving patterns and their perception during binocular motion rivalry and provide further evidence that rivalry periods are constrained by the ecologic relevance of stimuli.


Asunto(s)
Lateralidad Funcional/fisiología , Percepción de Movimiento/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Rotación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA