Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 121: 109435, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37669710

RESUMEN

There is a growing body of evidence about the potential of diet and nutrients to improve the population's mental health and the treatment of psychiatric disorders. Some studies have suggested that resveratrol has therapeutic properties in mental disorders, such as major depressive disorder, bipolar disorder, Alzheimer's disease, and autism. In addition, resveratrol is known to induce several benefits modulated by multiple synergistic pathways, which control oxidative stress, inflammation, and cell death. This review collects the currently available data from animal and human studies and discusses the potential mechanisms of action of resveratrol in prevention and therapy for psychiatric disorders.

2.
J Affect Disord ; 334: 307-316, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150224

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a complex and severe mental disorder that affects 1-3 % of the world population. Studies have suggested the involvement of oxidative stress in the physiopathology of this psychiatry disorder. Folic acid (FA), a vitamin from the B complex, is a nutraceutical that has recently been researched as a possible treatment for BD since folate is reduced in patients with the disorder. The present study aimed to evaluate the effects of lithium (Li) and FA on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). METHODS: Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (aCSF). From the day following ICV injection, the rats were treated for seven days with gavage injections of Li (47.5 mg/kg/mL), FA (50 mg/kg/mL), or water (1 mL/kg). On the 7th day after OUA injection, locomotor activity was measured using the open-field test. In addition, the oxidative stress parameters were evaluated in rats' frontal cortex, striatum, and hippocampus. RESULTS: OUA induced mania-like behavior and oxidative stress in rats' brains, but Li could reverse these alterations. FA did not affect behavior parameters; however, it presents an antioxidant effect on the brain structures evaluated. LIMITATIONS: The study was only evaluated male rats and ICV injection is an invasive procedure. CONCLUSION: These results indicate that even though FA has an effect against the oxidative stress induced by OUA, this effect was not strong enough to interfere with behavior parameters.


Asunto(s)
Antimaníacos , Ouabaína , Masculino , Ratas , Animales , Antimaníacos/farmacología , Antimaníacos/uso terapéutico , Ouabaína/farmacología , Manía/tratamiento farmacológico , Manía/patología , Ratas Wistar , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Modelos Animales de Enfermedad , Encéfalo , Estrés Oxidativo , Litio/farmacología , Conducta Animal
3.
Brain Res Bull ; 170: 246-253, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545309

RESUMEN

The present study aims to evaluate the effects of haloperidol, an important first-generation antipsychotic, on the antioxidant system parameters in the brain of animals subjected to a model of schizophrenia induced by ketamine. Adult rats intraperitoneally received saline (1 mL/kg) or ketamine (25 mg/kg body weight) for 15 days, and saline or haloperidol (0.1 mg/kg body weight) via gavage once a day, between the 9th and 14th days. In the frontal cortex, hippocampus, and striatum, assessments of lipid (4-hydroxy-2-nonenal and 8-isoprostane levels) and protein (protein carbonyl content) oxidative damage were conducted. It was also measured the glutathione peroxidase and glutathione reductase activities in the same cerebral structures. Increases in the 4-hydroxy-2-nonenal and 8-isoprostane levels were detected in rats receiving haloperidol and ketamine. An increase in the carbonyl content was also observed in animals receiving ketamine, haloperidol, or a combination thereof. In animals receiving the antipsychotic, there was a decrease in the activity of the enzymes. Therefore, both ketamine and haloperidol induced oxidative damage. A possible energy dysfunction or a haloperidol effect targeting the glutathione enzymes, and then disrupting the redox homeostasis in neurons, could not be ruled out, although further studies are required to confirm or refute a direct interaction.


Asunto(s)
Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Haloperidol/farmacología , Estrés Oxidativo/efectos de los fármacos , Esquizofrenia/metabolismo , Animales , Encéfalo/metabolismo , Ketamina , Masculino , Ratas , Ratas Wistar , Esquizofrenia/inducido químicamente , Superóxido Dismutasa/metabolismo
4.
Metab Brain Dis ; 35(2): 413-425, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840201

RESUMEN

Evaluate the efficacy of folic acid (FA) as a therapeutic adjunct to lithium (Li) on the manic-like behaviors as well as parameters of oxidative stress and inflammation in an animal model of mania induced by m-amphetamine (m-AMPH). Wistar rats first received m-AMPH or saline (NaCl 0.9%, Sal) for 14 days. Between the 8th and 14th day, rats were treated with water, Li, FA or a combination of thereof drugs (Li + FA). Manic-like behaviors were assessed in the open-field test. Oxidative stress and inflammation parameters were assessed in the frontal cortex, striatum, and hippocampus. Administration of m-AMPH in rats significantly enhanced the exploratory and locomotor behaviors, as well as the risk-taking and stereotypic behaviors. Li + FA reversed these behavioral alterations elicited by m-AMPH. Administration of this psychostimulant also increased oxidative damage to lipids and proteins, whereas Li + FA reversed these oxidative damages. m-AMPH also induced an increase in the glutathione peroxidase (GPx) activity and a decrease in the glutathione reductase (GR) activity. Li + FA reversed the alteration in GR activity, but not in GPx activity. In addition, m-AMPH increased the IL-1ß and TNF-α levels in the rat brain; Li + FA combined therapy reversed the alterations on these inflammatory parameters. FA administration per se reduced the increased TNF-α content induced by m-AMPH. Present study provides evidence that FA is effective as an adjunct to Li standard therapy on manic-like behaviors, oxidative stress and inflammatory parameters in a model of mania induced by m-AMPH.


Asunto(s)
Antimaníacos/administración & dosificación , Ácido Fólico/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Litio/administración & dosificación , Manía/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Anfetamina/toxicidad , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Modelos Animales de Enfermedad , Quimioterapia Combinada , Mediadores de Inflamación/metabolismo , Masculino , Manía/inducido químicamente , Manía/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Resultado del Tratamiento
5.
Transl Psychiatry ; 9(1): 297, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723123

RESUMEN

The present study intends to investigate the effect of lithium (Li) and celecoxib (Cel) coadministration on the behavioral status and oxidative stress parameters in a rat model of mania induced by dextroamphetamine (d-AMPH). Male Wistar rats were treated with d-AMPH or saline (Sal) for 14 days; on the 8th day of treatment, rats received lithium (Li), celecoxib (Cel), Li plus Cel, or water until day 14. Levels of oxidative stress parameters were evaluated in the serum, frontal cortex, and hippocampus. d-AMPH administration induced hyperlocomotion in rats, which was significantly reversed by Li and Cel coadministration. In addition, d-AMPH administration induced damage to proteins and lipids in the frontal cortex and hippocampus of rats. All these impairments were reversed by treatment with Li and/or Cel, in a way dependent on cerebral area and biochemical analysis. Li and Cel coadministration reversed the d-AMPH-induced decrease in catalase activity in cerebral structures. The activity of glutathione peroxidase was decreased in the frontal cortex of animals receiving d-AMPH, and treatment with Li, Cel, or a combination thereof reversed this alteration in this structure. Overall, data indicate hyperlocomotion and alteration in oxidative stress biomarkers in the cerebral structures of rats receiving d-AMPH. Li and Cel coadministration can mitigate these modifications, comprising a potential novel approach for BD therapy.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antimaníacos/uso terapéutico , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Celecoxib/uso terapéutico , Compuestos de Litio/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antimaníacos/administración & dosificación , Trastorno Bipolar/inducido químicamente , Celecoxib/administración & dosificación , Dextroanfetamina/administración & dosificación , Modelos Animales de Enfermedad , Dopamina/metabolismo , Quimioterapia Combinada , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Compuestos de Litio/administración & dosificación , Masculino , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
6.
Metab Brain Dis ; 34(3): 941-950, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919245

RESUMEN

The present study aimed to evaluate the effects of resveratrol on behavior and oxidative stress parameters in the brain of rats submitted to the animal model of mania induced by m-AMPH. In the first model (reversal treatment), rats received intraperitoneal (i.p.) injection of saline or m-AMPH (1 mg/kg body weight) once a day for 14 days, and from the 8th to the 14th day, they were orally treated with water or resveratrol (15 mg/kg), once a day. In the second model (maintenance treatment), rats were orally pretreated with water or resveratrol (15 mg/kg) once a day, and from the 8th to the 14th day, they received saline or m-AMPH i.p., once a day. Locomotor and exploratory activities were assessed in the open-field test. Oxidative and nitrosative damage parameters to lipid and proteins were evaluated by TBARS, 4-HNE, carbonyl, and 3-nitrotyrosine in the brain submitted to the experimental models. m-AMPH administration increased the locomotor and exploratory activities; resveratrol was not able to reverse or prevent these manic-like behaviors. Additionally, m-AMPH increased the lipid and protein oxidation and nitrosylation in the frontal cortex, hippocampus, and striatum of rats. However, resveratrol prevented and reversed the oxidative and nitrosative damage to proteins and lipids in all cerebral areas assessed. Since oxidative stress plays an important role in BD pathophysiology, supplementation of resveratrol in BD patients could be regarded as a possible adjunctive treatment with mood stabilizers.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Resveratrol/farmacología , Animales , Antimaníacos/farmacología , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas Wistar
7.
Mol Neurobiol ; 56(4): 2379-2393, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30027342

RESUMEN

The present study evaluated the effects of AR-A014418 on behavioral and oxidative stress parameters of rats submitted to the animal model of mania induced by ouabain (OUA). Wistar rats were submitted to stereotaxic surgery and received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid (aCSF), OUA, or AR-A014418. After 7 days, the animals were submitted to open-field test. After behavioral analysis, the brains were dissected in frontal cortex and hippocampus to the evaluation of oxidative stress. The OUA induced manic-like behavior in rats, which was reversed by AR-A014418 treatment. The ICV administration of OUA increases the levels of superoxide in submitochondrial particles, lipid hydroperoxide (LPH), 4-hydroxynonenal (4-HNE), 8-isoprostane, protein carbonyl, 3-nitrotyrosine, and activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) in both structures evaluated. In general, the treatment with AR-A014418 reversed these effects of OUA on the submitochondrial particles, LPH, 4-HNE, 8-isoprostane, protein carbonyl, 3-nitrotyrosine levels, and SOD activity. Furthermore, the injection of OUA decreased the catalase activity, and AR-A014418 promoted an increase in activity of this enzyme in the brain structures. These results suggest that GSK-3ß inhibition can modulate manic-like behaviors. Also, it can be suggested that inhibition of GSK-3ß can be effective against oxidative stress. However, more studies are needed to better elucidate these mechanisms. Graphical Abstract The effects of AR-A014418 on the behavioral and oxidative stress parameters in the animal model of mania induced by ouabain. Superoxide = superoxide production in submitochondrial particles; LPH = lipid hydroperoxide; 4-HNE = 4-hydroxynonenal; SOD = superoxide dismutase; GPx = glutathione peroxidase; GR = glutathione reductase.


Asunto(s)
Conducta Animal , Trastorno Bipolar/enzimología , Trastorno Bipolar/patología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Estrés Oxidativo , Aldehídos/metabolismo , Animales , Antioxidantes/metabolismo , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/fisiopatología , Catalasa/metabolismo , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Partículas Submitocóndricas/efectos de los fármacos , Partículas Submitocóndricas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Tiazoles/administración & dosificación , Tiazoles/farmacología , Tirosina/análogos & derivados , Tirosina/metabolismo , Urea/administración & dosificación , Urea/análogos & derivados , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...