Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 8(14): 7186-7194, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30073077

RESUMEN

The sustainable management of unwanted vegetation in agricultural fields through integrated weed control strategies requires detailed knowledge about the maternal formation of primary seed dormancy, to support the prediction of seedling emergence dynamics. This knowledge is decisive for the timing of crop sowing and nonchemical weed control measures. Studies in controlled environments have already demonstrated that thermal conditions and, to some extent, water availability during seed set and maturation has an impact on the level of dormancy. However, it is still unclear if this applies also under field conditions, where environmental stressors and their timing are more variable. We address this question for Alopecurus myosuroides in south-western Sweden. We quantified the effects of cumulated temperature and precipitation as well as soil water potential during the reproductive growth phase of A myosuroides on primary seed dormancy under field conditions. Empirical models differing in focal time intervals and, in case of soil water potential, focal soil depths were compared regarding their predictive power. The highest predictive power for the level of primary dormancy of A. myosuroides seeds was found for a two-factorial linear model containing air temperature sum between 0 and 7 days before peak seed shedding as well as the number of days with soil water potential below field capacity between 7 and 35 days before peak seed shedding. For soil water potential, it was found that only the top 10 cm soil layer is of relevance, which is in line with the shallow root architecture of A. myosuroides. We conclude that for this species the level of dormancy depends on the magnitude and timing of temperature and water availability during the reproductive growth phase. Water availability appears to be more important during maternal environmental perception and temperature during zygotic environmental perception.

2.
PLoS One ; 8(9): e74280, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086329

RESUMEN

Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds.


Asunto(s)
Herbicidas , Aceites de Plantas/farmacología , Malezas , Pirazoles/farmacología , Semillas/química , Metilación , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...