RESUMEN
INTRODUCTION: Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES: To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS: Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS: MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION: This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.
RESUMEN
Yeast cell wall (YCW) polysaccharides, including ß-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Asunto(s)
Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Saccharomyces cerevisiae/química , Levaduras/química , Humanos , Embalaje de Alimentos/métodos , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Emulsionantes/química , Pared Celular/químicaRESUMEN
The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.
Asunto(s)
Agaricus , Polilisina , Pseudomonas , Polilisina/farmacología , Resistencia a la EnfermedadRESUMEN
Ferritin is a cage-like protein with modifiable outer and inner surfaces. To functionalize ferritin with preferable carrier applications, caffeic acid was first covalently bound to the soybean ferritin outer surface to fabricate a caffeic acid-ferritin complex (CFRT) by alkali treatment (pH 9.0). A decreased content of free amino acid (0.34 µmol/mg) and increased polyphenol binding equivalent (63.76 nmol/mg) indicated the formation of CFRT (ferritin/caffeic acid, 1:80). Fluorescence and infrared spectra verified the binding of caffeic acids to the ferritin structure. DSC indicated that the covalent modification enhanced the thermal stability of CFRT. Besides, CFRT maintained the typically spherical shape of ferritin (12 nm) and a hydration radius of 7.58 nm. Moreover, the bioactive colorant betanin was encapsulated in CFRT to form betanin-loaded CFRT (CFRTB), with an encapsulation rate of 15.5% (w/w). The betanin stabilities in CFRTB were significantly improved after heat, light, and Fe3+ treatments, and its red color retention was enhanced relative to the free betanin. This study delves into the modifiable ferritin application as nanocarriers of dual molecules and gives guidelines for betanin as a food colorant.
Asunto(s)
Betacianinas , Ferritinas , Betacianinas/química , Ferritinas/química , Ácidos CafeicosRESUMEN
Betanin, a water-soluble colorant, is sensitive to light and temperature and is easily faded and inactivated. This study investigated the formation of yeast protein-chitooligosaccharide-betanin complex (YCB) induced by ultrasound treatment, and evaluated its protective effect on the colorant betanin. Ultrasound (200-600 W) increased the surface hydrophobicity and solubility of yeast protein, and influenced the protein's secondary structure by decreasing the α-helix content and increasing the contents of ß-sheet and random coil. The ultrasound treatment (200 W, 15 min) facilitated binding of chitooligosaccharide and betanin to the protein, with the binding numbers of 4.26 ± 0.51 and 0.61 ± 0.06, and the binding constant of (2.73 ± 0.25) × 105 M-1 and (3.92 ± 0.10) × 104 M-1, respectively. YCB could remain the typical color of betanin, and led to a smaller and disordered granule morphology. Moreover, YCB exhibited enhanced thermal-, light-, and metal irons (ferric and copper ions) -stabilities of betanin, protected the betanin against color fading, and realized a controlled release in simulated gastrointestinal tract. This study extends the potential application of the fungal proteins for stabilizing bioactive molecules.
Asunto(s)
Betacianinas , Quitosano , Proteínas Fúngicas , Oligosacáridos , Betacianinas/química , Betacianinas/farmacología , TemperaturaRESUMEN
Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.
Asunto(s)
Agaricus , Agaricus/genética , Acetatos/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacologíaRESUMEN
Several physiological changes occur during fruit storage, which include the regulation of genes, metabolisms and transcription factors. In this study, we compared 'JF308' (a normal tomato cultivar) and 'YS006' (a storable tomato cultivar) to determine the difference in accumulated metabolites, gene expression, and accessible chromatin regions through metabolome, transcriptome, and ATAC-seq analysis. A total of 1006 metabolites were identified in two cultivars. During storage time, sugars, alcohols and flavonoids were found to be more abundant in 'YS006' compared to 'JF308' on day 7, 14, and 21, respectively. Differentially expressed genes, which involved in starch and sucrose biosynthesis were observed higher in 'YS006'. 'YS006' had lower expression levels of CesA (cellulose synthase), PL (pectate lyase), EXPA (expansin) and XTH (xyglucan endoglutransglucosylase/hydrolase) than 'JF308'. The results showed that phenylpropanoid pathway, carbohydrate metabolism and cell wall metabolism play important roles in prolonging the shelf life of tomato (Solanum lycopersicum) fruit. The ATAC-seq analysis revealed that the most significantly up-regulated transcription factors during storage were TCP 2,3,4,5, and 24 in 'YS006' compared to 'JF308' on day 21. This information on the molecular regulatory mechanisms and metabolic pathways of post-harvest quality changes in tomato fruit provides a theoretical foundation for slowing post-harvest decay and loss, and has theoretical importance and application value in breeding for longer shelf life cultivars.
RESUMEN
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Asunto(s)
Agaricus , Filogenia , Agaricus/genética , Agaricus/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arginina/genéticaRESUMEN
The increasing incidence and rapid spread of bacterial resistance to conventional antibiotics are a serious global threat to public health, highlighting the need to develop new antimicrobial alternatives. Antimicrobial peptides (AMPs) represent a class of promising natural antibiotic candidates due to their broad-spectrum activity and low tendency to induce resistance. However, the development of AMPs for medical use is hampered by several obstacles, such as moderate activity, lability to proteolytic degradation, and low bioavailability. To date, many researchers have focussed on the optimization or design of novel artificial AMPs with desired properties. Unnatural amino acids (UAAs) are valuable building blocks in the manufacture of a variety of pharmaceuticals, and have been used to develop artificial AMPs with specific structural and physicochemical properties. Rational incorporation of UAAs has become a very promising approach to endow AMPs with strong and long-lasting activity but no toxicity. This review aims to summarize key approaches that have been used to incorporate UAAs to develop novel AMPs with improved properties and better performance. It is anticipated that this review will guide future design considerations for UAA-based antimicrobial applications.
Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Aminoácidos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacologíaRESUMEN
Currently, the use of synthetic pigments in foods is restricted since synthetic pigments are proven and suspected to be harmful to human health. Phycobiliproteins (PBPs), existed in phycobilisomes (PBSs) of algae, are a kind of pigment-proteins with intense color. The specific color of PBPs (red and blue) is given by the water-soluble open-chained tetrapyrrole chromophore (phycobilin) that covalently attaches to the apo-protein via thioether linkages to cysteine residues. According to the spectral characteristics of PBPs, they can be categorized as phycoerythrins (PEs), phycocyanins (PCs), allophycocyanins (APCs), and phycoerythrocyanins (PECs). PBPs can be used as natural food colorants, fluorescent substances, and bioactive ingredients in food applications owing to their color characteristics and physiological activities. This paper mainly summarizes the extraction and purification methods of the PBPs and reviews their characteristics and applications. Moreover, the use of several strategies such as additives, microencapsulation, electrospray, and cross-linking to improve the stability and bioavailability of PBPs as well as the future outlooks of PBPs as natural colorants in food commercialization are elucidated.
RESUMEN
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Asunto(s)
Proteínas F-Box , Solanum lycopersicum , Almidón Sintasa , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Metilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Circular , Almidón Sintasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas F-Box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Etilenos/metabolismo , ADN/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Oxidorreductasas/metabolismoRESUMEN
Leguminous proteins are important nutritional components in leguminous plants, and they have different structures and functions depending on their sources. Due to their specific structures and physicochemical properties, leguminous proteins have received much attention in food and nutritional applications, and they can be applied as various carriers for binding/encapsulation and delivery of food bioactive compounds. In this review, we systematically summarize the different structures and functional properties of several leguminous proteins which can be classified as ferritin, trypsin inhibitor, ß-conglycinin, glycinin, and various leguminous proteins isolates. Moreover, we review the development of leguminous proteins as carriers of food bioactive compounds, and emphasize the functions of leguminous protein-based binding/encapsulation and delivery in overcoming the low bioavailability, instability and low absorption efficiency of food bioactive compounds. The limitations and challenges of the utilization of leguminous proteins as carriers of food bioactive compounds are also discussed. Possible approaches to resolve the limitations of applying leguminous proteins such as instability of proteins and poor absorption of bioactive compounds are recommended.
Asunto(s)
Fabaceae , Disponibilidad Biológica , Ferritinas/química , Alimentos , Manipulación de AlimentosRESUMEN
Tomato fruit is susceptible to chilling injury (CI) when stored at low temperatures, limiting its storage potential, and resulting in economic loss if inappropriate temperatures are used. Brassinolide (BR) is a plant growth regulator that is known to decrease the susceptibility of fruit to CI. In this study, transcriptome, metabolome, and proteome analysis revealed the regulation mechanism of BR treatment in alleviating tomato fruit CI. The results showed that the differentially expressed metabolites mainly included amino acids, organic acids, carbohydrates, and lipids. Differentially expressed genes (DEGs) were involved in plant cold stress response (HSFA3, SHSP, and TPR), fruit redox process (POD, PAL, and LOX), related to the fruit texture (CESA, ß-Gal, and PAE), plant hormone signal transduction (ACS3, ARF, and ERF,), transcription factors (TCP, bHLH, GATA). Moreover, differentially expressed proteins were associated with fruit texture (CESA, PE, PL, and CHI), plant oxidation processes (LOX, GPX, CAT, and POD), plant cold stress response (HSF, HSP20, HSP70, and HSP90B), plant hormone signal transduction (BSK1 and JAR1) and transcription factors (WRKY and MYB). Our study showed that BR alleviates CI symptoms of tomato fruit by regulating LOX in the α-linolenic acid metabolism pathway, enhancing jasmonic acid-CoA (JA-CoA) synthesis, inhibiting cell wall and membrane lipid damage. The results provided a theoretical basis for further study on the CI mechanism of tomato fruit.
RESUMEN
Phytoferritin has a natural cagelike architecture for carrying bioactive molecules, and it is uniquely suited to function as a carrier due to its multiple interfaces and channels. In this study, a novel approach was proposed to prepare ferritin-salvianolic acid B-epigallocatechin gallate (EGCG) three-layer nanoparticles (FSE) through the steric hindrance of ferritin channels. Urea (30 mM) could expand the ferritin channel size evidenced by the improved iron release rate vo and promote the EGCG penetration into the ferritin cavity without disassembly of the ferritin cage. The encapsulation ratio of EGCG was 16.0 ± 0.14% (w/w). Salvianolic acid B attached to the outer interface of ferritin through weak bonds with a binding constant of (2.91 ± 0.04) × 105 M-1. The FSE maintained a spherical structure with a diameter of 12 nm. Moreover, when subjected to heat (40-70 °C) there was a significant increase in the stability of EGCG in the FSE due to the binding of salvianolic acid B. Through this interesting approach, two molecules are simultaneously attached and encapsulated in ferritin in a multilayer form under moderate conditions, which is conducive to the protection of unstable molecules for potential encapsulation and delivery utilization.
Asunto(s)
Catequina , Nanopartículas , Benzofuranos , Catequina/análogos & derivados , FerritinasRESUMEN
Plant ferritin has a natural cage-like nanospace for carrying bioactive ingredients. By taking advantage of the calcium binding ability of casein phosphopeptide (CPP) and the cage-like conformation of plant ferritin, a ferritin-CPP shell-core complex (FC) was fabricated with the reversible self-assembly character of ferritin induced by a pH 2.0/7.0 transition strategy. The FC-calcium composite (FCC) was further fabricated by binding of the FC with calcium ions. When the same amount of calcium was loaded, the calcium binding capacity of the FCC was 28.13 ± 1.65%, which was significantly higher than that of ferritin and CPP alone. Fluorescence and Fourier transform infrared analysis indicated that the CPP encapsulation and the calcium binding in the FCC influenced the ferritin structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) results showed that the spherical morphology and the 12 nm-diameter size were sustained in the FC and FCC. Moreover, the FCC as a transport carrier could increase the precipitation time of calcium phosphate, and the encapsulated calcium could be released in a more sustained manner as compared with ferritin and CPP under simulated in vitro gastrointestinal conditions. This study presents a novel calcium delivery strategy based on the ferritin cage and CPP, which will improve the applicability of ferritin and CPP and enhance the bioavailability of calcium ions.
Asunto(s)
Calcio/química , Caseínas/química , Portadores de Fármacos/química , Ferritinas/química , Fosfopéptidos/química , Nanocompuestos/químicaRESUMEN
Phycoerythrin (PE) is a natural water-soluble pigment protein with characteristic phycobilins and is sensitive to thermal and light environmental changes. In this study, PE was extracted from Porphyra haitanensis and PE-oligochitosan complexes (POC) were fabricated by a self-assembly approach. The effects of cationic oligochitosan on the binding interaction, structure, size distribution, and color stability of PE were evaluated. The stoichiometric number n was calculated to be 21.67 ± 2.65 (oligochitosan/PE) and the binding constant K was (6.47 ± 0.48) × 105 M-1. Cationic oligochitosan could electrostatically interact with PE and affect the PE structure by increasing the α-helix content. In addition, high concentrations of oligochitosan led to the formation of dense phycoerythrin protein granules. Moreover, at a reaction ratio of 20.0:1 (oligochitosan/PE), being approximately the predicted stoichiometric number n, the thermal stability (40-80 °C), natural light stability, and ultraviolet light irradiation (254 nm) stability of the POC were improved. This study provides an approach to reduce the susceptibility of PE upon environmental changes by forming a stable self-assembly complex, which will promote the application of PE as a natural pigment protein in food and chemical applications.
Asunto(s)
Ficoeritrina , Rhodophyta , Quitina , Quitosano , Oligosacáridos , Electricidad EstáticaRESUMEN
Ferritin, a protein with an 8-nm cage structure, can encapsulate and deliver bioactive molecules. In this study, succinylation was adopted to modify plant ferritin to fabricate succinylated red been ferritin (SRBF) at pH 8.0. The SRBF was retained as a cage-like shape (12 nm diameter), while its secondary structure was altered, rendering higher negative charge accompanies by decreased surface hydrophobicity. The SRBF also demonstrated favorable property of reversible assembly regulated by pH-transitions (pH 2.0/7.0), thus enabled successful encapsulation of epigallocatechin gallate (EGCG) for fabrication of EGCG-loaded SRBF complexes with a diameter of ~12 nm. Succinylation enhanced the thermal stabilities of ferritin and the embedded EGCG. Moreover, SRBF markedly improved the transport efficiency of EGCG in Caco-2 monolayers relative to EGCG and that encapsulated in unmodified ferritin. These findings have extended the succinylation reaction for the cage-like protein modification, and facilitated the usage of ferritin variant in delivery of bioactive molecules.
Asunto(s)
Portadores de Fármacos/química , Ferritinas/química , Nanoestructuras/química , Polifenoles/farmacocinética , Células CACO-2 , Catequina/análogos & derivados , Catequina/química , Estabilidad de Medicamentos , Ferritinas/farmacocinética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polifenoles/químicaRESUMEN
Enzymatic hydrolysis and glycosylation were successively applied to modify soybean protein isolate (SPI) and rheological and textural properties of acid-induced SPI gel added with the obtained SPI hydrolysates and their glycosylated products were then investigated. The incorporation of SPI hydrolysates decreased the elastic modulus (G') and hardness of SPI gel, which might be related to the random aggregation between SPI hydrolysates and native SPI molecules via hydrophobic interactions. In addition, as the molecular weight of SPI hydrolysates decreased, the reduction in G' and hardness became more significant. Although glycosylation of SPI hydrolysates weakened the adverse effects of hydrolysates on the SPI gel formation to some extent, the glycosylated SPI hydrolysates were still unable to improve the gel quality compared with the control. However, results of this research may provide important information for understanding the influencing mechanism of SPI hydrolysates and their glycosylated products on the formation of SPI gel.
Asunto(s)
Glycine max/metabolismo , Hidrolisados de Proteína/química , Proteínas de Soja/química , Módulo de Elasticidad , Electroforesis en Gel de Poliacrilamida , Geles/química , Glicosilación , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Reología , Proteínas de Soja/metabolismo , Ácidos Sulfónicos/químicaRESUMEN
Ferritin is an iron-containing protein and functions in the maintenance of iron balance in organisms. Currently the interaction among ferritin, ion iron, and food bioactive compounds is still unclear. In this study, the mechanism underlying the interaction of ferritin, ion iron, and chlorogenic acid was investigated, as well as the effect of chlorogenic acid on the physicochemical properties of ferritin. The results showed that chlorogenic acid could interact with Fe(III) to form chlorogenic acid-Fe(III) complexes, which then bonded with ferritin via hydrogen bonds in the ferritin-chlorogenic acid-Fe(III) complexes. The chlorogenic acid showed a high efficiency in Fe(II) chelation and hydroxyl radical (â¢OH) capture, and could promote iron oxidation and iron release induced by ferritin. Chlorogenic acid could also effectively reduce the polymerization extent of ferritin induced by Fe(III) and Fe(II). This study elucidates the interactions of multiple components in foodstuffs by using a protein-metal-polyphenol model.
Asunto(s)
Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Hierro/farmacología , Multimerización de Proteína/efectos de los fármacos , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de ProteínaRESUMEN
BACKGROUND: The functionality of pea proteins is relatively weak relative to that of soybean proteins, which limits the application of pea proteins in food and nutritional applications. Glycosylation is a promising approach to influence the protein structure and in turn change the functional properties of pea proteins. RESULTS: In this study, the effect of transglutaminase-induced oligochitosan glycosylation on the structural and functional properties of pea seed legumin was studied. Different oligochitosan-modified legumin complexes (OLCs) were prepared by applying different molar ratios of legumin to oligochitosan (1:1 to 1:4) induced by transglutaminase (10 U g-1 protein). Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), glucosamine, and free amino analysis showed that the legumin could be covalently bonded with the oligochitosan and were influenced by the applying dose of the oligochitosan. Infrared spectroscopy, fluorescence, and scanning electron microscopy analysis indicated that the structure of the different OLC samples could be changed to different extents. Moreover, although the emulsifying activity decreased, the emulsification stability, thermal stability, and in vitro digestive stability of the OLCs were remarkably improved relative to that of the untreated legumin. CONCLUSION: Oligochitosan glycosylation could change the structure of the legumin and consequently improve its emulsification stability, thermal stability, and in vitro digestive stability. This study will facilitate the legumin functionalization by the glycosylation approach to fabricate protein-oligochitosan complex for potential food and nutritional applications. © 2020 Society of Chemical Industry.